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The problem: Pricing a Digital option

Let Xt be a d-dimensional stochastic process satisfying the SDE for
0 < t ≤ 1

dXt = a(Xt , t)dt + σ(Xt , t)dWt .

Let (Ft)0≤t≤1 be the natural filtration of Wt .

We want to price a digital option of the form (dropping discounting)

P[X1 ∈ K ] = E[ IX1∈K ]

for some K ⊂ Rd . Let {X `
t}1t=0 be an approximation of the path {Xt}1t=0

at level ` using h−1` ≡ 2` timesteps.

For |E[ IX1∈K − I
X

`
1∈K

]| . hα` , a Monte Carlo estimator of E[ IX1∈K ] has

computational complexity ε−2−α to achieve MSE ε.
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Multilevel Monte Carlo

Consider a hierarchy of corrections {∆P`}L`=0 such that

E[ ∆P` ] =

E
[
I
X

0
1∈K

]
` = 0

E
[
I
X

`
1∈K
− I

X
`−1
1 ∈K

]
otherwise.

MLMC can be formulated as

E
[
IX1∈K

]
=
∞∑
`=0

E[ ∆P` ] ≈
L∑
`=0

1

M`

M∑̀
m=1

∆P
(m)
`

Assuming

Var[ ∆P` ] . hβd` , |E[ ∆P` ]| . hα` , Work(∆P`) . h−1`

then to compute with MSE ε2 the complexity of MLMC is
O(ε−2−max(1−βd,0)/α) when βd 6= 1 and O(ε−2|log ε|2) otherwise.
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Examples: Classical Method

Using ∆P` = I
X

`
1
− I

X
`−1
1

, note that Var[ ∆P` ] . hβd` is an implication of

E
[(

X
`
1 − X

`−1
1

)2 ]1/2

≈ O(hβd` ).

Euler-Maruyama has α = 1 and βd ≈ 1/2 and complexity is O(ε
−5/2)

(Compare to O(ε−2|log ε|2) for a Lipschitz payoff).

Milstein has α = 1 and βd ≈ 1 and complexity is O(ε−2|log ε|2)
(Compare to O(ε−2) for a Lipschitz payoff).

Antithetic Milstein has the same rates es Euler-Maruyama (better
rates possible with at least a Lipschitz payoff).
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Conditional Expectation

For some 0 < τ < 1, let

∆Q` := E[ ∆P` | F1−τ ].

Note E[ ∆Q` ] = E[ ∆P` ].

We can consider the MLMC estimator based on ∆Q` instead of ∆P`. The
work and (hopefully improved) variance convergence of ∆Q` becomes
relevant.
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Computing ∆Q`

In 1D, taking τ ≡ h` and using Euler-Maruyama for the last step we know
that the conditional distribution of ∆P` given F1−τ is Gaussian and we
can compute ∆Q` exactly.

Let g(x) = E
[
I
X

`
1∈K

∣∣∣X `
1−τ = x

]
, then (roughly)

E[ ∆Q2
` ] ≈ E

[(
g(X

`
1−τ )− g(X

`−1
1−τ )

)2 ]
. E

[
(g ′(X

`
1−τ ))2

∣∣X `
1−τ − X `−1

1−τ
∣∣2 ]+ . . .

. O
(
h

1/2
` (h

−1/2
` )2 hβ`

)
= O(h

−1/2+β
` )
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Examples: Conditional Expectations

Euler-Maruyama has β = 1, hence Var[ ∆Q` ] ≈ O(h
1/2
` ). Using the

Conditional expectation does not offer an advantage over the classical
method.

Milstein has β = 2, hence Var[ ∆Q` ] ≈ h
3/2
` and complexity is O(ε−2).

Antithetic Milstein estimator has similar complexity to
Euler-Maruyama. We do have β = 2 but would involve the second
derivative E[ (g ′′)2 ] ∝ h

−3/2
` .
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Path splitting to estimate ∆Q`

More generally, for any method and any τ , we can use path splitting
(Monte Carlo) with sufficient number of samples, leading to increased
work.
See, e.g., Glasserman (2004) and Burgos & Giles (2012) for more
information on this method (for computing options and sensitivities).

When τ → 0, i.e., splitting late,

Var[ ∆Q` ] ≤ E
[

(E[ ∆P` | F1−τ ])2
]

= E
[

(∆P`)
2
]

= O(hβd` )

leads to worse variance.

When τ → 1, i.e., splitting early,

Var[ ∆Q` ] ≤ E
[

(E[ ∆P` | F1−τ ])2
]

= (E[ ∆P` ])2 = O(h2βd` )

leads to worse work.
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Solution: More splitting

For τ ′ > τ

∆Q ′` := E[ ∆Q` | F1−τ ′ ]

= E[E[ ∆P` | F1−τ ] | F1−τ ′ ]

Again E[ ∆Q ′` ] = E[ ∆P ]

Now we have finer control over τ, τ ′ and the number of samples we can
use to compute the two expectations.
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Path Branching

Let 1− τ`′ = 1− 2−`
′

for `′ ∈ {1, . . . , `}.
For every `′, starting from X1−τ`′ at time 1− τ`′ , create two sample
paths {Xt}1−τ`′≤t≤1−τ`′+1

which depend on two independent samples
of the Brownian motion {Wt}1−τ`′≤t≤1−τ`′+1

.

Evaluate the payoff difference ∆P
(i)
` for every X

(i)
1 for i ∈ {1, . . . , 2`}

Define the Monte Carlo average as ∆P` := 2−`
∑2`

i=1 ∆P
(i)
`

0 1

1−
τ 1

1−
τ 2

1−
τ 3

t

1
2
3
4
5
6
7
8

0 1
1−
τ 1

1−
τ 2

1−
τ 3
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Main Assumptions & Bounds

Another way to see this: We have 2` extra samples. Cost (identical would
be too correlated)? Correlation (independent would be too costly)?

Assumption

Assume that there exists βd, βc, p > 0 such that for all τ > h`

E[ (∆P`)
2 ] . hβd`

and E
[

(E[ ∆P` | F1−τ ])2
]
.

hβc`
τ 1/2

Theorem (Work/Variance bounds)

E[ ∆P` ] = E[ ∆P` ]

Work(∆P`) . ` h−1`

Var[ ∆P` ] . hβd+1
` + hβc`
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Proof

Recall τ`′ = 2−`
′

Work(∆P`) ≤ h−1`

(
(1− τ1) +

`−1∑
`′=1

2`
′
(τ`′ − τ`′+1) + 2`τ`

)
. ` h−1`

Var[ ∆P` ] ≤ E

 1

2`

2`∑
i=1

∆P
(i)
`

2 
≤ 1

2`
E[ ∆P2

` ] +
1

22`

2`∑
i=1

2`∑
j=1,i 6=j

E[ ∆P
(i)
` ∆P

(j)
` ]

≤ 1

2`
E[ ∆P2

` ] +
1

22`

2`∑
i=1

2`∑
j=1,i 6=j

E[ (E[ ∆P` | F1−τ (i,j) ])2 ]

0 1

1−
τ 1

1−
τ 2

1−
τ 3

t

1
2
3
4
5
6
7
8
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Examples: Path Branching

Euler-Maruyama has βd ≈ 1/2 and βc ≈ 1 hence Var[ ∆P` ] ≈ O(h`).
The complexity is O(ε−2|log ε|3) (Compare to O(ε−2|log ε|2) for a
Lipschitz payoff).

Milstein has βd ≈ 1 and βc ≈ 2 hence Var[ ∆P` ] ≈ O(h2` ) and
complexity is O(ε−2) (Same as for a Lipschitz payoff).

Antithetic Milstein estimator has better rates than Euler-Maruyama!
Different analysis shows Var[ ∆P` ] ≈ O(h

3/2
` ) hence complexity is

O(ε−2) (Same as for a Lipschitz payoff).
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Simplified Assumptions on SDE solution/Approximation

Theorem (Based on SDE solution and approximation)

Assume that for some δ0 > 0 and all 0 < δ ≤ δ0 and 0 < τ ≤ 1, and
letting d∂K (x) = miny∈∂K‖x − y‖, there is a constant C independent of
δ, τ and F1−τ such that

E
[

(P[ d∂K (X1) ≤ δ | F1−τ ])2
]
≤ C

δ2

τ 1/2
.

Assume additionally that there is q > 2 and β > 0 such that

E
[ (

X1 − X
`
1

)q ]1/q
. h

β/2
`

Then βd =
β

2
×
(

1− 1

q + 1

)
and βc = β ×

(
1− 2

q + 2

)
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MLMC Complexity

When q is arbitrary,

βd ≈
β

2
and βc ≈ β

and for β ≤ 2
Var[ ∆P` ] ≈ O(hβ` )

Work(∆P`) = O(`h−1` )

Using Euler-Maryama: β = 1 and the MLMC computational
complexity is approximately o

(
ε−2+ν

)
for any ν > 0 and for MSE ε.

Using Milstein: β = 2 and the complexity is O(ε−2).
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SDEs with Gaussian Transition Kernels

Lemma

Assume that a and σ are bounded and uniformly Hölder continuous and σ
is uniformly elliptic and when ∂K is “nice” then there is C > 0 such that

E
[

(P[ d∂K (X1) ≤ δ | F1−τ ])2
]
≤ C

δ2

τ 1/2

and E
[

(P[ d∂K (exp(X1)) ≤ δ | F1−τ ])2
]
≤ C

δ2

τ 1/2
.

Proof. Based on bounding the conditional density of X1 by a Gaussian
density. E.g.

E
[

(P[ d∂K (X1) ≤ δ | F1−τ ])2
]

.
1

τ 1/2

(∫ δ

−δ
dx

)
× E[P[ d∂K (X1) ≤ δ | F1−τ ] ] .

δ2

τ 1/2
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Numerical Results on GBM
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Numerical Results on GBM
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What’s done

We also consider a sequence τ`′ = 2−η`
′

for some η > 0. For η > 1,
this reduces the work of ∆P` to O(2`).

More theoretical and numerical analysis for antithetic estimators.

Manuscript “Multilevel Path Branching for Digital Options” coming
soon.
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Future work

Computing sensitivities: Using bumping, the variance increases as the
bump distance decreases. Branching can help.

Pricing other options (Barrier); not clear extension, combine with
adaptive splitting?

Particle systems and Multi-index Monte Carlo.

Approximate CDFs.

Parabolic SPDEs with MLMC or MIMC. Method extends naturally,
but analysis could be more challenging.
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Elliptic SDEs

Definiton ((Si) sets)

We say that a set S ⊂ Rd is an (Si) set if there exists an orthonormal
matrix A and a Lipschitz function f such that S = AS̃ for the set

S̃ = {x ∈ Rd : f (x−1) = x1},

and AS̃ denoting the image of S̃ under the transformation x → Ax .

Lemma

For K ⊂ Rd assume that ∂K ⊆
⋃n

j=1 Sj for some finite n and (Si) sets
{Sj}nj=1. Assume further that a and σ are bounded and uniformly Hölder
continuous and σ is uniformly elliptic then

E
[

(P[ d∂K (X1) ≤ δ | F1−τ ])2
]
≤ C

δ2

τ 1/2
.
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A nice set

f1(x)

f2(y)

δK = {x ∈ R2 : x21 + x22 = 1}
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A not-so-nice set

∂K = {(r , θ) ∈ R+×[0, 2π] : r = (n + θ/π)−
1
2 , n ∈ N}
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Exponentials of Elliptic SDEs

What about a Geometric Brownian Motion Yt = exp(Xt)?

dYt = aYt dt + σYt dWt

dXt = a dt + σ dWt

Lemma

For K ⊂ Rd assume that ∂K ⊆
⋃n

j=1 exp(Sj) for some finite n and (Si)
sets {Sj}nj=1. Assume further that a and σ are bounded and uniformly
Hölder continuous and σ is uniformly elliptic then

E
[

(P[ d∂K (exp(X1)) ≤ δ | F1−τ ])2
]
≤ C

δ2

τ 1/2
.
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