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The problem: Computing probabilities

P[Z ∈ Ω ] = E[ IZ∈Ω ]

where Z is a d-dimensional random variable and Ω ∈ Rd . This problem
can be written in the form

P[X > 0 ] = E[ IX>0 ]

for a one-dimensional random variable X which is the signed distance of Z
to Ω.

Two main reasons this problem can be challenging:
1 The event is rare – use (sequential) importance sampling,
2 and the complexity of sampling X .
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The problem: Computing probabilities

Financial risk assessment X := E[Y |R ]−MaxLoss

P[E[Y |R ] > MaxLoss ]

≈ P

[
1
N

N∑
i=1

Y (i)(R) > MaxLoss

]

Digital options X := S(T )− K where S is an asset price satisfying an
SDE and K is the strike price

P[ S(T ) > K ]

≈ P[Sh(T ) > K ]

where Sh is an Euler-Maruyama or Milstein approximations with step
size h.

Darcy flow: X := g(Y ) where g depends on the solution of a PDE
with random coefficients Y .

P[ g(Y ) > 0 ]

≈ P[ gh(Y ) > 0 ]

where gh is a Finite Element approximation with grid size h.
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Monte Carlo: A General Framework

Focus on
E[ f (X ) ]

for some function f . For our setup, f (X ) := IX>0. Assume we can
approximate X ≈ X` with ` ∈ N

Assumptions

Work of X` is ∝ 2γ`.
Bias: E` := |E[ f (X`)− f (X ) ]| ∝ 2−α`.

When the sampling dimensionality is high, best option is to use Monte
Carlo

E[ IX>0 ] ≈ 1
M

M∑
m=1

I
X

(m)
L >0

To approximate P[X > 0 ] with an error tolerance ε, need M = O(ε−2)
and L = O( 1

α |log ε|) hence complexity is O(ε−2−γ/α).
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Multilevel Monte Carlo: A General Framework

The MLMC estimator is based on

E[ f (X ) ] = E[ f (X0) ] +
∞∑
`=1

E[ f (X`)− f (X`−1) ]

≈ E[ f (X0) ] +
L∑
`=1

E[ f (X`)− f (X`−1) ]

≈ 1
M0

M0∑
m=1

f (X 0,m
0 ) +

L∑
`=1

1
M`

M∑̀
m=1

f (X `,m
` )− f (X `,m

`−1)
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Multilevel Monte Carlo: A General Framework

Assumptions

Work of X` is W` ∝ 2γ`.
Bias: |E[ f (X`)− f (X ) ]| ∝ 2−α`.
Variance: E[ |X` − X |2 ] ∝ 2−β`.

Theorem
For Lipschitz f , the overall cost of Multilevel Monte Carlo for computing
E[ f (x) ] to accuracy ε using optimal L, {M`}L`=0 is

ε−2 β > γ

ε−2(log ε)2 β = γ

ε−2− γ−β
α β < γ

Proof.

Var[ f (X`)− f (X`−1) ] ≤ E[ (f (X`)− f (X`−1))2 ] ≤ LE[ |X` − X`−1|2 ]
Haji-Ali (HWU) Adaptive for Computing Probabilities TUM — December 13, 2022 7 / 24



Multilevel Monte Carlo: A General Framework

Example
For a standard European call option we have E[ f (X ) ] for X = S(T )− K
and f (X ) = max(X , 0). Approximating S(T ) by Euler-Maruyama satisfies
the previous assumptions with α = β = γ = 1. The complexity is

O
(
ε−3) for Monte Carlo.

O
(
ε−2(log ε)2

)
using Multilevel Monte Carlo.
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Discontinuous f : Key assumptions

Our quantity of interest is E[ IX>0 ] is discontinuous, need a different kind
of analysis.

Assumptions
For all ` ∈ N define

δ` :=
|X`|
σ`
≥ 0,

for some random variable σ` > 0. For all `:

1 There is δ > 0 such that for x ≤ δ we have P[ δ` ≤ x ] . x .

2 There is q > 2 such that(
E
[(
|X` − X |

σ`

)q ])1/q

. 2−β`/2.
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MLMC analysis

Lemma

Var[ IX`>0 − IX`−1>0 ] . 2−
q

q+1 `β/2

Proof. |X − X`| ≈ O(2−`β/2)

Corollary
Computing E[ IX>0 ] to accuracy ε using Multilevel Monte Carlo has cost:


ε−2 β > q+1

q · 2γ
ε−2(log ε)2 β = q+1

q · 2γ

ε
−2−

(
γ− q

q+1β/2
)
/α

β < q+1
q · 2γ
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Previous research

M. B. Giles, D. J. Higham, and X. Mao. “Analysing Multi-Level Monte
Carlo for options with non-globally Lipschitz payoff”. In: Finance and
Stochastics 13.3 (July 2009), pp. 403–413. ISSN: 0949-2984, 1432-1122.
DOI: 10.1007/s00780-009-0092-1
Original analysis of classical MLMC for discontinuous payoffs.

M. B. Giles, T. Nagapetyan, and K. Ritter. “Multilevel Monte Carlo
Approximation of Distribution Functions and Densities”. In: SIAM/ASA
Journal on Uncertainty Quantification 3.1 (Jan. 2015), pp. 267–295. ISSN:
2166-2525. DOI: 10.1137/140960086
Deals with similar problems in the generality of the current work. Uses
different method based on smoothing the discontinuity. Assumes
differentiability of PDF and requires further analysis to determine effect of
smoothing parameter on bias/variance.

C. Bayer, C. B. Hammouda, and R. Tempone. “Numerical smoothing and
hierarchical approximations for efficient option pricing and density
estimation”. In: (2020). arXiv: 2003.05708
Same as above. Smoothes the discontinuity by intergrating using a high
order method with respect to one of the dimensions.
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Previous research (adaptivity)

D. Elfverson, F. Hellman, and A. Målqvist. “A Multilevel Monte Carlo
Method for Computing Failure Probabilities”. In: SIAM/ASA Journal on
Uncertainty Quantification 4.1 (Jan. 2016), pp. 312–330. ISSN: 2166-2525.
DOI: 10.1137/140984294
Selective refinement of samples. Based on relaxing the condition. Assumes
almost sure error bounds (works well for PDEs with random coefficients but
not stochastic models).

M. Broadie, Y. Du, and C. C. Moallemi. “Efficient Risk Estimation via
Nested Sequential Simulation”. In: Management Science 57.6 (June 2011),
pp. 1172–1194. ISSN: 0025-1909, 1526-5501. DOI:
10.1287/mnsc.1110.1330
Adaptive sampling for nested expectation with Monte Carlo methods.

M. B. Giles and A.-L. Haji-Ali. “Multilevel Nested Simulation for Efficient
Risk Estimation”. In: SIAM/ASA Journal on Uncertainty Quantification 7.2
(Jan. 2019), pp. 497–525. ISSN: 2166-2525. DOI: 10.1137/18m1173186
Adaptive sampling for MLMC applied to nested expectations only. Requires
stronger conditions on the random variables than here.
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Adaptive Multilevel Monte Carlo: Algorithm

Refine samples of X` to X`+η` , where 0 ≤ η` ≤ dθ`e is the smallest integer
for which

δ`+η` ≥ 2
γ
r

(θ`(1−r)−η`)

for constants r > 1 and 0 ≤ θ ≤ 1. Recall that δ` :=
|X`|
σ`
≥ 0.

σ
(1)
` 2−β`/2

X
(1)
`

X
(2)
`

X (1) X (2)

Indicator function Ix>0
pdf of X`

Haji-Ali (HWU) Adaptive for Computing Probabilities TUM — December 13, 2022 13 / 24



Adaptive Multilevel Monte Carlo: Algorithm

Refine samples of X` to X`+η` , where 0 ≤ η` ≤ dθ`e is the smallest integer
for which

δ`+η` ≥ 2
γ
r

(θ`(1−r)−η`)

for constants r > 1 and 0 ≤ θ ≤ 1. Recall that δ` :=
|X`|
σ`
≥ 0.

σ
(1)
` 2−β`/2

X
(1)
`

X
(2)

`+η
(2)
`

X (1) X (2)

Indicator function Ix>0
pdf of X`

Haji-Ali (HWU) Adaptive for Computing Probabilities TUM — December 13, 2022 13 / 24



Adaptive Multilevel Monte Carlo: Algorithm
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2−γ ` θ 2−γ ` θ (r−1)/r0

dθ`e

δ`+η`

η `
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Adaptive Multilevel Monte Carlo: Analysis

Theorem
There is r̄ > 1 such that for 1 < r < r̄ :

The expected work of sampling IX`+η`>0 is W` ∝ 2γ`.

The variance is

Var[ IX`>0 − IX`+η`>0 ] ∝ 2−
q

q+1
1+θ
2 β`

for

θ =


1

2 q+1
q

γ
β
−1

β < q+1
q γ

1 β > q+1
q γ

.
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Adaptive Multilevel Monte Carlo: Complexity

Corollary
Computing E[ IX>0 ] to accuracy ε using (non-)adaptive Multilevel Monte
Carlo has cost:

Non-Adaptive: 
ε−2 β > q+1

q · 2γ
ε−2(log ε)2 β = q+1

q · 2γ

ε
−2−

(
γ− q

q+1β/2
)
/α

β < q+1
q · 2γ

Adaptive: 
ε−2 β > q+1

q · γ
ε−2(log ε)2 β = q+1

q · γ

ε
−2−

(
γ− q

q+1β(1+θ)/2
)
/α

β < q+1
q · γ
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Work/variance proof idea

Refining to X`+η`

` = 3, r = 1.99

2−γ ` θ 2−γ ` θ (r−1)/r

2γ`

2γ(1+θ)`

δ`+η`

2γ
(`

+
η
`
)
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Adaptive Multilevel Monte Carlo: Complexity

Example
When approximating the price of a digital option

E
[
IS(T )>K

]
,

using Euler-Maruyama approximation of S(T ), or the risk estimation
problem

E
[
IE[Y |R]>0

]
,

the assumptions hold for α = β = γ = 1 and any q <∞. The complexity
is (for any ν > 0)

O
(
ε−3) for Monte Carlo.

o
(
ε−2.5−ν) for non-adaptive Multilevel Monte Carlo.

o
(
ε−2−ν) for adaptive Multilevel Monte Carlo.
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Numerical Test: Digital Options

h` = 2−` adaptive r = 1.8 h` = 4−`

0 2 4 6 8

100

101

102

103

104

105

`

W
`
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Numerical Test: Digital Options

h` = 2−` adaptive r = 1.8 h` = 4−`

Monte Carlo

10−3 10−2 10−1

101

102

103

104

Normalised ε

C
os
t×
ε2
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Other risk measures: VaR and CVaR

VaR, Lη, is defined for a given η ∈ (0, 1) implicitly by

P[X >Lη ] = η.

This can be estimated by a stochastic root-finding algorithm, with the
acceptable error ε being steadily reduced during the iteration.

Given an estimate L̃η, CVaR is then (Rockafellar and Uryasev, 2000)

E[X |X >Lη ] = Lη + η−1E[ max(0,X−Lη) ]

= min
x

{
x + η−1E[ max(0,X−x) ]

}
= L̃η + η−1E

[
max

(
0,X−L̃η

) ]
+O

((
L̃η−Lη

)2
)

For ε RMS error, first estimate L̃η to accuracy O(ε1/2) at cost o(ε−2).

Then estimate η−1E[ max(0, L−L̃η) ] to accuracy ε using MLMC + uniform
sampling. Complexity is O(ε−2).
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Other points in the paper

Nested expectation: Differs from previous work in that the same
samples are used for computing the refinement, η` and for computing
the estimate X`+η` . Leads to reduced cost and more relaxed
assumptions.
Discussion on choices of σ` in nested expectation.
Motivation of previous assumptions in the case of nested expectation
and SDEs.
Analysis of weak error bounds and corresponding necessary
assumptions.
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Conclusion

Accurate computation of probabilities by standard Monte Carlo
techniques is expensive when the underlying observable must be
approximated for each sample.
Multilevel Monte Carlo is a great method to reduce this cost, but
suffers for probabilities due to the intrinsic discontinuity.
Adaptive sampling provides a general framework to improve Multilevel
Monte Carlo performance for probabilities, in many cases to optimal
O
(
ε−2) cost.

Drawback: All even moments are equal and MLMC Algorithms suffer
from high kurtosis ∝ V−1

` . Decreasing variance leads to increased
kurtosis!
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Where to go from here:

Barrier “options” for time series models.
Computing CDFs rather than probabilities.
Devise methods for hedging risk.
Computing sensitives.
Adaptive methods for Multi-index Monte Carlo: Most relevant to
problems with stochastic PDEs.
Rare events.

Questions?
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Numerical Tests: Digital Options

For constant µ, σ, S(0) consider the asset

dS(t) = µS(t) dt + σS(t) dW (t).

Compute
E[ IX>0 ] := E[ IS(T )−K>0 ]

for some strike price K > 0. We use Euler-Maruyama with a step size
h` = 2−` to approximate Sh`(·) ≈ S(·) and set

X` := Sh`(T )− K .

The assumptions are satisfied using constant σ` ≡ 1 for α = β = γ = 1 and
any q <∞ giving complexity O

(
ε−2.5−ν) for standard Multilevel Monte

Carlo and O(ε−2−ν) for any ν > 0 using adaptive Multilevel Monte Carlo.
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Numerical Tests: Digital Options

Consider the assets

dS (i)(t) = µiS (i)(t) + σiS (i)(t)dW (i)(t)

where
W i (t) = ρW

(i)
com(t) +

√
1− ρ2W

(i)
ind(t)

for 1 ≤ i ≤ 10. Consider the digital option with payoff

I( 1
10
∑10

i=1 S
(i)(t))>K .

Thus, compute
E
[
I( 1

10
∑10

i=1 S
(i)(t))>K

]
.
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