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Monte Carlo

Our goal is to compute
E[Ψ(X ) ]

for some stochastic model X ≈ X̂ (ℓ), for ℓ ∈ N, which can only be sampled
approximately.

Assume for w , γ > 0 that

|E[Ψ(X )−Ψ(X̂ (ℓ)) ]| = O(2−wℓ)

Cost(X̂ (ℓ)) = O(2γℓ)

Then a Monte Carlo estimator for a fixed L ∈ N with N samples has cost
O(N 2γL), bias O(2−wL), statistical error O(N−1/2). Complexity is
O(ε−2−γ/w ) for an RMSE ε.
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Multilevel Monte Carlo

Assume we have an estimator ∆(ℓ)Ŷ such that

E[∆(ℓ)Ŷ ] =

{
E[Ψ(X (0)) ] ℓ = 0

E[Ψ(X̂ (ℓ))−Ψ(X̂ (ℓ−1)) ] otherwise

with Cost(∆(ℓ)Ŷ ) = O(2γℓ) and

Var[∆(ℓ)Ŷ ] = O(2−2sℓ)

Then, write

E[Ψ(X ) ] =
∞∑
ℓ=0

E[∆(ℓ)Ŷ ] ≈
L∑

ℓ=0

1

Nℓ

Nℓ∑
n=1

∆(ℓ,n)Ŷ

Then for same choice of L, and optimal choices of {Nℓ}Lℓ=0, the
complexity can be shown to be

ε−2 2s > γ

ε−2|log ε|2 2s = γ

ε−2− 2s−γ
w 2s > γ
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SDEs and Euler-Maruyama

Assume

dXt = a(Xt) dt +
d ′∑
i=1

bi (Xt)dW
i
t

for a, bi : Rd → Rd and d ′ independent Wiener processes (W i )d
′

i=1, and
use Euler-Maruyama with ∆t−1

ℓ time-steps for the approximation

X̂
(ℓ)
(m+1)∆tℓ

= X̂
(ℓ)
m∆tℓ

+ a
(
X̂

(ℓ)
m∆tℓ

)
∆tℓ +

d ′∑
i=1

bi

(
X̂

(ℓ)
m∆tℓ

)
∆mW

i

where ∆mW
i=(W i

(m+1)∆tℓ
−W i

m∆tℓ
) and set ∆(ℓ)Ŷ=Ψ(X̂

(ℓ)
1 )−Ψ(X̂

(ℓ−1)
1 ),

then for Lipschitz Ψ,

|E[Ψ(X1)−Ψ(X̂
(ℓ)
1 ) ]| = O(∆tℓ)

Cost(Ψ(X̂
(ℓ)
1 )) = O(∆t−1

ℓ )

Var[∆(ℓ)Ŷ ] = O(∆tℓ)

Hence complexity is O(ε−2|log ε|2).
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SDE and Milstein

Use Milstein scheme instead with ∆t−1
ℓ time-steps for the approximation

X̂
(ℓ)
(m+1)∆tℓ

= X̂
(ℓ)
m∆tℓ

+ a
(
X̂

(ℓ)
m∆tℓ

)
∆tℓ +

d ′∑
i=1

bi

(
X̂

(ℓ)
m∆tℓ

)
∆mW

i

+
1

2

d ′∑
i=1

d ′∑
j=1

Jbj

(
X̂

(ℓ)
m∆tℓ

)
bi (X̂

(ℓ)
m∆tℓ

)
(
∆mW

i∆mW
j − δi ,j∆tℓ − Aij

m

)
where the Lévy area is defined as

Aij
m =

∫ (m+1)∆tℓ

m∆tℓ

∫ s1

m∆tℓ

dW j
s2 dW

i
s1 − dW i

s2 dW
j
s1
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SDE and Milstein

Again, set ∆(ℓ)Ŷ = Ψ(X̂
(ℓ)
1 )−Ψ(X̂

(ℓ−1)
1 ), then for Lipschitz Ψ,

|E[Ψ(X1)−Ψ(X̂
(ℓ)
1 ) ]| = O(∆tℓ)

Cost(Ψ(X̂
(ℓ)
1 )) = O(∆t−1

ℓ + (d ′ − 1)(d ′ − 2)∆t−2
ℓ )

Var[∆(ℓ)Ŷ ] = O(∆t2ℓ )

Hence complexity is O(ε−2) when d ′ ∈ {1, 2} otherwise O(ε−2|log ε|2).
We also get O(ε−2) when the noise is commutative

Jbj (x)bi (x) = Jbi (x)bj(x)

since Aij
m = −Aji

m.
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Antithetic Milstein

(Giles & Szpruch, 2014) proposed the following scheme which depends on
Brownian increments only

X̂
(ℓ)
(m+1)∆tℓ

= X̂
(ℓ)
m∆tℓ

+ a
(
X̂

(ℓ)
m∆tℓ

)
∆tℓ +

d ′∑
i=1

bi

(
X̂

(ℓ)
m∆tℓ

)
∆mW

i

+
1

2

d ′∑
i=1

d ′∑
j=1

Jbj

(
X̂

(ℓ)
m∆tℓ

)
bi (X̂

(ℓ)
m∆tℓ

)
(
∆mW

i∆mW
j − δi ,j∆tℓ

)
and a corresponding antithetic scheme, X̂ (a,ℓ), that swaps the Brownian
increments between each two successive time steps.

Then they noted that for ∆(ℓ)Ŷ ≡ 1
2

(
Ψ(X̂

(ℓ)
1 ) + Ψ(X̂

(a,ℓ)
1 )

)
−Ψ(X̂

(ℓ−1)
1 ),

and a (relaxable) twice-differentiable Ψ, the variance convergence is
improved to

Var[∆(ℓ)Ŷ ] = O(∆t2ℓ ).
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Stochastic Partial Differential Equations

Let H be a separable Hilbert space (e.g. H = L2(D)), T > 0 and
consider the H-valued Itô-SDE

dX (t) = [AX (t) + F (X (t))]dt + G (X (t))dW (t), t ∈ [0,T ],

(Financial modeling, stochastic epidemic models, stochastic forcing in
heat transfer, filtering etc.)

Aim: Estimate E[Ψ(X (T )) ] by MLMC methods, where Ψ is a given
(deterministic) functional.
Potential issues:

low temporal and spatial regularity
variance of the corrections in a MLMC Euler scheme decays slowly with
order O(∆t).
Milstein schemes yield faster decay, but require the simulation of
iterated integrals.

Extend the antithetic coupling within a truncated Milstein scheme, as
proposed by Giles and Szpruch for finite-dim, to the infinite
dimensional setting.
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Model problem & Assumptions

dX (t) = [AX (t)+F (X (t))]dt+G (X (t))dW (t), t ∈ [0,T ], X (0) = X0.
(SPDE)

A : D(A) ⊂ H → H is a densely defined, self-adjoint, linear operator.
Further, A generates an analytic semigroup
(S(t) = eAt , t ≥ 0) ⊂ L(H) and is boundedly invertible. (e.g.
A := △)

F : H → H is a (Lipschitz) non-linearity.

W : Ω× [0,T ] → H is a Q-Wiener process with trace class
covariance operator Q ∈ L+

1 (H).

G : H → LHS(H;H) is Lipschitz, where H := Q1/2H is the RKHS
associated to Q.

X0 ∈ L2(Ω;H).
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Regularity of mild solutions

There is a unique mild solution X : Ω× [0,T ] → H to (SPDE), given by

X (t) = S(t)X0 +

∫ t

0
S(t − s)F (X (s))ds +

∫ t

0
S(t − s)G (X (s))dW (s),

for t ∈ [0,T ]. Under mild assumptions: X (t) ∈ Lp(Ω; Ḣα) for some
α > 0, t ∈ [0,T ] and Ḣα := D((−A)α/2).
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Pathwise approximations

Spatial approximation: Replace H by a discrete subspace VN with
dim(VN) = N ∈ N and let PN : H → VN be the ONP onto VN . The
discrete operator AN : VN → VN generates a semigroup
SN = (SN(t), t ≥ 0) on VN .

Noise approximation: Let (ek , k ∈ N) denote the (orthonormal)
eigenbasis of Q. We use a truncated Karhunen-Loève expansion to
approximate W via

W (t) ≈ WK (t) :=
K∑

k=1

(W (t), ek)Hek , K ∈ N.

where {(W (t), ek)H}k is a sequence of real-valued and independent
Brownian motions with variance ηk = (Qek , ek)H (the k ’th eigenvalue
of Q).
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Pathwise approximations (cont.)

Time stepping: Use M ∈ N time steps and a rational approximation
r(∆tAN) ≈ SN(∆t) for ∆t = T/M.

r(∆tAN)v =
N∑

n=1

r(∆tλ̃n)(v , f̃n)H f̃n, v ∈ H.

given the H-orthonormal eigenbasis (f̃1, . . . , f̃N) ⊂ VN of
eigenfunctions of (−AN), with corresponding non-decreasing
eigenvalues (λ̃1, . . . , λ̃N).
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Assumptions on pathwise approximations

1 The rational approximation r of SN is of order q ∈ N and stable.
That is, r(z) = e−z +O(zq+1) as z → 0, |r(z)| < 1 for z > 0 and
limz→∞ r(z) = 0.

2 Subspace approximation property: Fix α > 0 and let (VN ,N ∈ N) be
a sequence of subspaces VN ⊂ V such that dim(VN) = N. There are
constants C , α̃ > 0, depending on α and d , such that for any N ∈ N
and any v ∈ Ḣα there holds

∥v−PNv∥H ≤ CN−α̃∥v∥Ḣα , and ∥Amin(α,2)/2
N PNv∥H ≤ C∥v∥Ḣmin(α,2) .

3 Strong convergence: There are constants C , α̃, β > 0 such that for
p ∈ (0, 8] and all discretization parameters M,N,K ∈ N there holds
the strong error estimate

max
m=0,...,M

∥X (m∆t)− Y N,K
m ∥Lp(Ω;H) ≤ C

(
M−1/2 + N−α̃ + K−β

)
.

Haji-Ali (HWU) Antithetic Milstein scheme for SPDEs KAUST, 28 May, 2024 13 / 27



Truncated Milstein scheme

XN(t) = SN(t)PNX0 +

∫ t

0
SN(t − s)PNF (XN(s))ds

+

∫ t

0
SN(t − s)PNG (XN(s))dW (s).

From now on, assume F ≡ 0. For fixed M,N,K , the truncated Milstein
iteration is obtained using first order Taylor expansion of G and reads

Y N,K
m+1 = r(∆tAN)PNY

N,K
m + r(∆tAN)PNG (Y N,K

m )∆mWK

+
r(∆tAN)PN

2

K∑
k,l=1

G ′(Y N,K
m )

(
PNG (Y N,K

m )
√
ηlel

)

√
ηkek(∆mwk∆mwl − δk,l∆t)

.

where wk are standard Brownian processes and (ek , k ∈ N) denote the
eigenfunctions of Q with corresponding eigenvalues (ηk , k ∈ N) ⊂ R≥0 in
decaying order.
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We introduce a continuous, square-integrable, L1(H)-valued, martingale
on [tm,T ]

Wm,K (s) := (WK (s)−WK (tm))⊗(WK (s)−WK (tm))−(s−tm)
K∑

k=1

ηk ek⊗ek ,

with a corresponding L1(H)-valued increment

∆mWm,K := ∆mWK ⊗∆mWK −∆t
K∑

k=1

ηk ek ⊗ ek .

And defined G : H → LHS(LHS(H);H) such that the truncated Milstein is
written as

Y N,K
m+1 = r(∆tAN)PN

(
Y N,K
m + G (Y N,K

m )∆mWK + G(Y N,K
m )∆mWm,K

)
.
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Antithetic coupling

Fix M,N,K ∈ N and let the coarse scale discretization be given by

Y c
m+1 = r(∆tAN)PN(Y

c
m + G (Y c

m)∆mWK + G(Y c
m)∆mWm,K )

for m = 0, . . . ,M − 1.

Fine scale: Let δt := ∆t/2 and denote for m = 0, 1/2, 1, . . . ,M − 1/2,M, the
corresponding ”fine increments” δmWK and δmWm,K , so that

∆mWK = δm+1/2WK + δmWK

∆mWm,Kf
= δm+1/2Wm,Kf

+ δmWm,Kf

+ δm+1/2WKf
⊗ δmWKf

+ δmWKf
⊗ δm+1/2WKf

.
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Antithetic coupling

The fine discretization with 2M time steps and Nf ≥ N,Kf ≥ K is then
given by

Y f
m+1/2 = r(δtANf

)PNf

(
Y f
m + G (Y f

m)δmWKf
+ G(Y f

m)δmWm,Kf

)
,

Y f
m+1 = r(δtANf

)PNf

(
Y f
m+1/2 + G (Y f

m+1/2)δm+1/2WKf

+ G(Y f
m+1/2)δm+1/2Wm,Kf

)
.

The antithetic counter part of the fine discretization is

Y a
m+1/2 = r(δtANf

)PNf

(
Y a
m + G (Y a

m)δm+1/2WKf
+ G(Y a

m)δm+1/2Wm,Kf

)
,

Y a
m+1 = r(δtANf

)PNf

(
Y a
m+1/2 + G (Y a

m+1/2)δmWKf

+ G(Y a
m+1/2)δmWm,Kf

)
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Antithetic coupling II

We aim to estimate E[Ψ(X (T )) ] for Ψ ∈ C 2
b (H;R) with MLMC.

Rather than using Ψ(Y f
M) on the fine levels of the MLMC estimator, we

use the antithetic average

ΨM :=
Ψ(Y f

M) + Ψ(Y a
M)

2
.

For any Ψ ∈ C 2
b (H;R) it holds that that

E[ΨM ] = E[Ψ(Y f
M) ], (no additional bias)

E[ |ΨM −Ψ(X (T ))|2 ] ≤ C
(
M−1 + N−2α̃ + K−2β

)
,

(strong error preserved)

For YM :=
Y f
M+Y a

M
2 there holds

E[ |ΨM −Ψ(Y c
M)|2 ] ≤ CE[ ∥YM − Y c

M∥2H ].

⇒ ”Antithetic variances” decay faster than O(M−1).
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Improved variance decay for antithetic coupling in SPDEs

Theorem (H.-A. and A. Stein, 2023)

Let supt∈[0,T ] X (t) ∈ L8(Ω; Ḣα) hold for some α ≥ 1, and let
M,Nf ,N,Kf ,K ∈ N be such that Nf ≥ N and Kf ≥ K . Under suitable
assumptions on F , G (twice Fréchet differentiable with bounded
derivatives, linear growth, ...), X0 and Q, there is a constant C > 0,
independent of M,N, and K , such that the corrections in the antithetic
Milstein scheme satisfy

E[ ∥YM − Y c
M∥2H ] ≤ C

(
M−min(α,2) + N−2α̃ + K−2β

)
.

Recall that for the Euler/truncated Milstein scheme without antithetic
correction, we have

E[ ∥Y f
M − Y c

M∥2H ] ≤ C
(
M−1 + N−2α̃ + K−2β

)
.
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Proof ideas

Prove that G is Fréchet differentiable, then using a Taylor expansion of G
and G, write

Ym+1 = r(δtANf
)2PNf

(
Ym + G (Ym)∆mWKf

+ G(Ym)∆mWm,Kf

)
+ Ξm + Om,

where Ξm,Om : Ω → H are random variables such that

E[ ∥Ξm∥2H ] ≤ C∆t2
(
M−min(α,2) + N−2α0

f + K−4β
f

)
,

E[Om

∣∣Ftm ] = 0 and E[ ∥Om∥2H ] ≤ C∆t
(
M−min(α,2) + N−2α0

f + K−4β
f

)
.

Then expand the difference YM − Y c
M and use Grönwall’s inequality.
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Proof ideas: Regularity limit

During expansion, we will have terms of the form

F (r(δtANf
)Y f

m)− r(δtANf
)PNf

F (Y f
m)

= F (Y f
m) + F ′(ξ2m)

[
r(δtANf

)Y f
m − Y f

m

]
− r(δtANf

)PNf
F (Y f

m)

=
[
I − r(δtANf

)PNf

]
F (Y f

m) + F ′(ξ2m)
[
r(δtANf

)− I
]
Y f
m

(1)

Wherein, for example,

E

[ ∥∥∥[r(δtANf
)− I ]Y f

m

∥∥∥2
H

]
≤ ∥r(δtANf

)− I∥2L(Ḣα,H)
E[ ∥Y f

m∥2Ḣα ]

Finally, this is bounded using

∥r(δtA)− I∥L(Ḣα,H) ≤ ∥r(δtA)− S(δt)∥L(Ḣα,H) + ∥S(δt)− I∥L(Ḣα,H)

≤ Cδt
α/2.

From (Thomée, 2007) and (Pazy, 1983). Similar bounds hold when
considering G and G after using Burkholder-Davis-Gundy inequality.
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We can balance the errors via N ≈ Mmin(α,2)/2α̃ and K ≈ Mmin(α,2)/2β on all
levels.

Let Ψ ∈ C 2
b (H;R), M0 ∈ N, and let Mℓ := M02

ℓ for ℓ ∈ N0. Assume that

there are C > 0 and γ = γ(G ) > 0 such that

”Cost of sampling ΨM on level ℓ” ≤ CM1+γ
ℓ , ∀ℓ ∈ N0.

for any δ ∈ (0, 1) there is a constant C = C (Ψ, δ) > 0 such that

|E[Ψ(X (T )) ]− E[Ψ(Y Nℓ,Kℓ
Mℓ

) ]| ≤ CM
−(1−δ)
ℓ , ∀ℓ ∈ N0.
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Theorem (H.-A. and A. Stein, 2023)

Under the previous conditions, there exists for any ε ∈ (0, e−1) an
antithetic MLMC-Milstein estimator E anti

L (ΨM) such that

E
[
|E anti

L (ΨM)− E[Ψ(X (T )) ]|2
]
≤ ε2.

The computational complexity CML to compute a realization of E anti
L (ΨM)

is bounded by

CML ≤


Cε−2, min(α, 2) > 1 + γ,

Cε−2| log(ε)|2, min(α, 2) = 1 + γ,

Cε−2− 1+γ−min(α,2)
1−δ , min(α, 2) < 1 + γ.
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Numerical example: Stochastic heat equation

Let D = [0, 1]d , d ∈ {1, 2, 3}, H := L2(D) and let A := △ be the
Laplace-operator with hom. Dirichlet BCs. The eigenpairs
((λn, fn), k ∈ N) of (−A) are given in closed form (λn ∝ n2/d)

W is a Q-Wiener process with operator Q = ((−△)−s) for a
smoothness parameter s > d/2.
We consider the stochastic heat equation given by

dX (t) = △X (t)dt + G (X (t))dW (t), X (0) = X0, (2)

for a random X0 ∈ L8(Ω; Ḣ2) and with diffusion coefficient
G : H 7→ LHS(H;H) given by (for v ∈ H, u ∈ H)

G (v)u :=
∞∑
j=1

(v , ej)Hej+1(u,
√
ηj+1ej+1)H + j−1/2−εej(u,

√
ηjej)H.

It holds that X (t) ∈ L8(Ω; Ḣα) for α ∈ [1,min(1 + s, 2)).
We combine the antithetic Milstein scheme with a spectral Galerkin
approach and truncated Karhunen-Loève expansions for W . All errors
are balanced via α̃ = α and β = s/d − 1/2.

Haji-Ali (HWU) Antithetic Milstein scheme for SPDEs KAUST, 28 May, 2024 24 / 27



Numerical example: Stochastic heat equation

Let D = [0, 1]d , d ∈ {1, 2, 3}, H := L2(D) and let A := △ be the
Laplace-operator with hom. Dirichlet BCs. The eigenpairs
((λn, fn), k ∈ N) of (−A) are given in closed form (λn ∝ n2/d)
W is a Q-Wiener process with operator Q = ((−△)−s) for a
smoothness parameter s > d/2.

We consider the stochastic heat equation given by

dX (t) = △X (t)dt + G (X (t))dW (t), X (0) = X0, (2)
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W is a Q-Wiener process with operator Q = ((−△)−s) for a
smoothness parameter s > d/2.
We consider the stochastic heat equation given by

dX (t) = △X (t)dt + G (X (t))dW (t), X (0) = X0, (2)

for a random X0 ∈ L8(Ω; Ḣ2) and with diffusion coefficient
G : H 7→ LHS(H;H) given by (for v ∈ H, u ∈ H)

G (v)u :=
∞∑
j=1

(v , ej)Hej+1(u,
√
ηj+1ej+1)H + j−1/2−εej(u,

√
ηjej)H.

It holds that X (t) ∈ L8(Ω; Ḣα) for α ∈ [1,min(1 + s, 2)).
We combine the antithetic Milstein scheme with a spectral Galerkin
approach and truncated Karhunen-Loève expansions for W . All errors
are balanced via α̃ = α and β = s/d − 1/2.
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Figure: (left) Shows the the variance for the antithetic estimator and the variance
for the “Standard” truncated Milstein estimator without the antithetic correction,
for the smoothness parameter s = 3d/4. (right) Shows the relative variance
decay between the two estimators, for different smoothness parameters s. The
variance estimates were obtained using Monte Carlo sampling with at least 4000
samples. Recall α < min(1 + s, 2).
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Figure: (left) Shows the the variance for the antithetic estimator and the variance
for the “Standard” truncated Milstein estimator without the antithetic correction,
for the smoothness parameter s = 3d/4. (right) Shows the relative variance
decay between the two estimators, for different smoothness parameters s. The
variance estimates were obtained using Monte Carlo sampling with at least 4000
samples. Recall α < min(1 + s, 2).
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Figure: (left) Shows the the variance for the antithetic estimator and the variance
for the “Standard” truncated Milstein estimator without the antithetic correction,
for the smoothness parameter s = 3d/4. (right) Shows the relative variance
decay between the two estimators, for different smoothness parameters s. The
variance estimates were obtained using Monte Carlo sampling with at least 4000
samples. Recall α < min(1 + s, 2).
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Conclusions and outlook

Summary:

Infinite-dimensional antithetic Milstein scheme for (parabolic) SPDEs.
Avoids simulation of iterated integrals.
Improved complexity (under certain conditions).
Increase in efficiency depends on smoothness of the mild solution.

Next steps:

Treatment of noise approximation (antithetic/improved).
Milstein (and truncated Milstein) has a quadratic cost for dense
operators!
Develop an antithetic Lévy area approximation for path dependent
estimates.
SPDEs with Lévy noise (⇒ BDG inequalities).
Relax assumptions on F and G (Lipschitz and piece-wise
twice-differentiable).
First-order hyperbolic SPDEs (exploit weak formulation).
Tamed schemes for non-Lipschitz drift coefficients.
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