Antithetic Milstein scheme for SPDEs

Al Haji-Ali Joint work with Andreas Stein (ETH)

Heriot-Watt University

Stochastic Numerics and Statistical Learning: Theory and Applications Workshop 28 May, 2024

Monte Carlo

Our goal is to compute

$E[\Psi(X)]$

for some stochastic model $X\approx \hat X^{(\ell)}$, for $\ell\in\mathbb N$, which can only be sampled approximately.

Monte Carlo

Our goal is to compute

 $E[\Psi(X)]$

for some stochastic model $X\approx \hat X^{(\ell)}$, for $\ell\in\mathbb N$, which can only be sampled approximately. Assume for $w, \gamma > 0$ that

$$
|\mathsf{E}[\,\mathsf{\Psi}(X)-\mathsf{\Psi}(\hat{X}^{(\ell)})\,]|=\mathcal{O}(2^{-w\ell})\atop \mathsf{Cost}(\hat{X}^{(\ell)})=\mathcal{O}(2^{\gamma\ell})
$$

Then a Monte Carlo estimator for a fixed $L \in \mathbb{N}$ with $\mathfrak N$ samples has cost $\mathcal{O}(\mathfrak{N} \, 2^{\gamma L})$, bias $\mathcal{O}(2^{-wL})$, statistical error $\mathcal{O}(\mathfrak{N}^{-1/2})$. Complexity is $\mathcal{O}(\varepsilon^{-2-\gamma/w})$ for an RMSE $\varepsilon.$

Multilevel Monte Carlo

Assume we have an estimator $\Lambda^{(\ell)}\hat{Y}$ such that

$$
\mathsf{E}[\,\Delta^{(\ell)}\,\hat Y\,]=\begin{cases} \mathsf{E}[\,\Psi(X^{(0)})\,] & \ell=0 \\ \mathsf{E}[\,\Psi(\hat X^{(\ell)})-\Psi(\hat X^{(\ell-1)})\,] & \text{otherwise} \end{cases}
$$

with $Cost(\Delta^{(\ell)}\hat{Y}) = \mathcal{O}(2^{\gamma\ell})$ and $\mathsf{Var}[\,\Delta^{(\ell)}\hat{\mathsf Y}\,] = \mathcal{O}(2^{-2s\ell})$

Then, write

$$
\mathsf{E}[\,\Psi(X)\,]=\sum_{\ell=0}^\infty\mathsf{E}[\,\Delta^{(\ell)}\,\hat Y\,]\approx\sum_{\ell=0}^L\frac{1}{\mathfrak{N}_\ell}\sum_{n=1}^{\mathfrak{N}_\ell}\Delta^{(\ell,n)}\,\hat Y
$$

Then for same choice of L, and optimal choices of $\{\mathfrak{N}_{\ell}\}_{\ell=0}^L$, the complexity can be shown to be

$$
\begin{cases} \varepsilon^{-2} & 2s > \gamma \\ \varepsilon^{-2} |\log \varepsilon|^2 & 2s = \gamma \\ \varepsilon^{-2 - \frac{2s - \gamma}{w}} & 2s > \gamma \end{cases}
$$

Haji-Ali (HWU) [Antithetic Milstein scheme for SPDEs](#page-0-0) KAUST, 28 May, 2024 3/27

SDEs and Euler-Maruyama

Assume

$$
dX_t = a(X_t) dt + \sum_{i=1}^{d'} b_i(X_t) dW_t^i
$$

for $a,b_i:\mathbb{R}^d\to\mathbb{R}^d$ and d' independent Wiener processes $(W^i)_{i=1}^{d'}$, and use Euler-Maruyama with Δt_{ℓ}^{-1} ϵ^{-1} time-steps for the approximation

$$
\hat{X}^{(\ell)}_{(m+1)\Delta t_{\ell}} = \hat{X}^{(\ell)}_{m\Delta t_{\ell}} + a \Big(\hat{X}^{(\ell)}_{m\Delta t_{\ell}} \Big) \, \Delta t_{\ell} + \sum_{i=1}^{d'} b_i \Big(\hat{X}^{(\ell)}_{m\Delta t_{\ell}} \Big) \Delta_m W^i
$$

where $\Delta_m W^i{=}(W^i_{(m+1)\Delta t_\ell}\!-\!W^i_{m\Delta t_\ell})$ and set $\Delta^{(\ell)}\hat Y{=}\Psi(\hat X_1^{(\ell)}$ $\mathcal{Y}_1^{(\ell)})- \mathsf{\Psi}(\hat X_1^{(\ell-1)})$ $\binom{\ell-1}{1}$, then for Lipschitz Ψ,

$$
|\mathsf{E}[\,\Psi(X_1)-\Psi(\hat{X}^{(\ell)}_1)\,]|=\mathcal{O}(\Delta t_\ell) \atop \mathsf{Cost}(\Psi(\hat{X}^{(\ell)}_1))=\mathcal{O}(\Delta t_\ell^{-1}) \atop \mathsf{Var}[\,\Delta^{(\ell)}\,\hat{Y}\,]=\mathcal{O}(\Delta t_\ell)
$$

Hence complexity is $\mathcal{O}(\varepsilon^{-2}|\log \varepsilon|^2)$. Haji-Ali (HWU) [Antithetic Milstein scheme for SPDEs](#page-0-0) KAUST, 28 May, 2024 4 / 27

SDE and Milstein

Use Milstein scheme instead with Δt_{ℓ}^{-1} e^{-1} time-steps for the approximation

$$
\hat{X}_{(m+1)\Delta t_{\ell}}^{(\ell)} = \hat{X}_{m\Delta t_{\ell}}^{(\ell)} + a \Big(\hat{X}_{m\Delta t_{\ell}}^{(\ell)} \Big) \Delta t_{\ell} + \sum_{i=1}^{d'} b_i \Big(\hat{X}_{m\Delta t_{\ell}}^{(\ell)} \Big) \Delta_m W^i + \frac{1}{2} \sum_{i=1}^{d'} \sum_{j=1}^{d'} J_{b_j} \Big(\hat{X}_{m\Delta t_{\ell}}^{(\ell)} \Big) b_i (\hat{X}_{m\Delta t_{\ell}}^{(\ell)}) \big(\Delta_m W^i \Delta_m W^j - \delta_{i,j} \Delta t_{\ell} - A_m^{ij} \big)
$$

where the Lévy area is defined as

$$
A_m^{ij} = \int_{m \Delta t_\ell}^{(m+1)\Delta t_\ell} \int_{m \Delta t_\ell}^{s_1} \mathrm{d} W_{s_2}^j \, \mathrm{d} W_{s_1}^i - \mathrm{d} W_{s_2}^i \, \mathrm{d} W_{s_1}^j
$$

SDE and Milstein

Again, set
$$
\Delta^{(\ell)} \hat{Y} = \Psi(\hat{X}_1^{(\ell)}) - \Psi(\hat{X}_1^{(\ell-1)})
$$
, then for Lipschitz Ψ ,

$$
\begin{aligned} |\mathsf{E}[\,\mathsf{\Psi}(X_1)-\mathsf{\Psi}(\hat X_1^{(\ell)})\,]|&=\mathcal{O}(\Delta\,t_\ell) \\ \text{Cost}(\mathsf{\Psi}(\hat X_1^{(\ell)}))&=\mathcal{O}(\Delta\,t_\ell^{-1}+(d'-1)(d'-2)\Delta\,t_\ell^{-2})\\ \text{Var}[\,\Delta^{(\ell)}\hat Y&]=\mathcal{O}(\Delta\,t_\ell^2) \end{aligned}
$$

Hence complexity is $\mathcal{O}(\varepsilon^{-2})$ when $d' \in \{1,2\}$ otherwise $\mathcal{O}(\varepsilon^{-2}|\!\log\varepsilon|^2).$ We also get $\mathcal{O}(\varepsilon^{-2})$ when the noise is commutative

$$
J_{b_j}(x)b_i(x)=J_{b_i}(x)b_j(x)
$$

since $A_m^{ij} = -A_m^{ji}$.

Antithetic Milstein

(Giles & Szpruch, 2014) proposed the following scheme which depends on Brownian increments only

$$
\hat{X}_{(m+1)\Delta t_{\ell}}^{(\ell)} = \hat{X}_{m\Delta t_{\ell}}^{(\ell)} + a \Big(\hat{X}_{m\Delta t_{\ell}}^{(\ell)} \Big) \Delta t_{\ell} + \sum_{i=1}^{d'} b_i \Big(\hat{X}_{m\Delta t_{\ell}}^{(\ell)} \Big) \Delta_m W^i
$$

$$
+ \frac{1}{2} \sum_{i=1}^{d'} \sum_{j=1}^{d'} J_{b_j} \Big(\hat{X}_{m\Delta t_{\ell}}^{(\ell)} \Big) b_i (\hat{X}_{m\Delta t_{\ell}}^{(\ell)} \Big) (\Delta_m W^i \Delta_m W^j - \delta_{i,j} \Delta t_{\ell})
$$

and a corresponding antithetic scheme, $\hat{X}^{(\text{a},\ell)}$, that swaps the Brownian increments between each two successive time steps.

Antithetic Milstein

(Giles & Szpruch, 2014) proposed the following scheme which depends on Brownian increments only

$$
\hat{X}_{(m+1)\Delta t_{\ell}}^{(\ell)} = \hat{X}_{m\Delta t_{\ell}}^{(\ell)} + a \Big(\hat{X}_{m\Delta t_{\ell}}^{(\ell)} \Big) \Delta t_{\ell} + \sum_{i=1}^{d'} b_i \Big(\hat{X}_{m\Delta t_{\ell}}^{(\ell)} \Big) \Delta_m W^i
$$

$$
+ \frac{1}{2} \sum_{i=1}^{d'} \sum_{j=1}^{d'} J_{b_j} \Big(\hat{X}_{m\Delta t_{\ell}}^{(\ell)} \Big) b_i (\hat{X}_{m\Delta t_{\ell}}^{(\ell)} \Big) (\Delta_m W^i \Delta_m W^j - \delta_{i,j} \Delta t_{\ell})
$$

and a corresponding antithetic scheme, $\hat{X}^{(\text{a},\ell)}$, that swaps the Brownian increments between each two successive time steps.

Then they noted that for $\Delta^{(\ell)}\hat{Y}\equiv \frac{1}{2}$ $\frac{1}{2} \Big(\Psi(\hat{X}^{(\ell)}_1$ $\mathcal{Y}_1^{(\ell)})+\mathsf{\Psi}(\hat{\mathsf{X}}_1^{(\text{a},\ell)})$ $\mathfrak{V}^{\mathrm{(a,\ell)}}_1)\Big) - \mathfrak{V}(\hat X_1^{(\ell-1)}).$ $\binom{\ell-1}{1}$, and a (relaxable) twice-differentiable Ψ , the variance convergence is improved to

$$
\mathsf{Var}[\,\Delta^{(\ell)}\hat{\mathsf{Y}}\,]=\mathcal{O}(\Delta\,t_\ell^2).
$$

Haji-Ali (HWU) [Antithetic Milstein scheme for SPDEs](#page-0-0) KAUST, 28 May, 2024 7 / 27

Let H be a separable Hilbert space (e.g. $H = L^2(\mathcal{D}))$, $\mathcal{T} > 0$ and $\overline{\text{consider the }H\text{-valued}}$ Itô-SDE

$$
dX(t)=[AX(t)+F(X(t))]dt+G(X(t))dW(t),\quad t\in[0,T],
$$

(Financial modeling, stochastic epidemic models, stochastic forcing in heat transfer, filtering etc.)

Let H be a separable Hilbert space (e.g. $H = L^2(\mathcal{D}))$, $\mathcal{T} > 0$ and $\overline{\text{consider the }H\text{-valued}}$ Itô-SDE

$$
dX(t)=[AX(t)+F(X(t))]dt+G(X(t))dW(t),\quad t\in[0,T],
$$

(Financial modeling, stochastic epidemic models, stochastic forcing in heat transfer, filtering etc.)

• Aim: Estimate E[$\Psi(X(T))$] by MLMC methods, where Ψ is a given (deterministic) functional.

Let H be a separable Hilbert space (e.g. $H = L^2(\mathcal{D}))$, $\mathcal{T} > 0$ and consider the H -valued Itô-SDE

 $dX(t) = [AX(t) + F(X(t))]dt + G(X(t))dW(t), t \in [0, T],$

(Financial modeling, stochastic epidemic models, stochastic forcing in heat transfer, filtering etc.)

- Aim: Estimate E[$\Psi(X(T))$] by MLMC methods, where Ψ is a given (deterministic) functional.
- **•** Potential issues:
	- low temporal and spatial regularity
	- variance of the corrections in a MLMC Euler scheme decays slowly with order $\mathcal{O}(\Delta t)$.
	- Milstein schemes yield faster decay, but require the simulation of iterated integrals.

Let H be a separable Hilbert space (e.g. $H = L^2(\mathcal{D}))$, $\mathcal{T} > 0$ and consider the H -valued Itô-SDE

 $dX(t) = [AX(t) + F(X(t))]dt + G(X(t))dW(t), t \in [0, T],$

(Financial modeling, stochastic epidemic models, stochastic forcing in heat transfer, filtering etc.)

- Aim: Estimate E[$\Psi(X(T))$] by MLMC methods, where Ψ is a given (deterministic) functional.
- **•** Potential issues:
	- low temporal and spatial regularity
	- variance of the corrections in a MLMC Euler scheme decays slowly with order $\mathcal{O}(\Delta t)$.
	- Milstein schemes yield faster decay, but require the simulation of iterated integrals.
- Extend the antithetic coupling within a truncated Milstein scheme, as proposed by Giles and Szpruch for finite-dim, to the infinite dimensional setting.

$$
dX(t) = [AX(t) + F(X(t))]dt + G(X(t))dW(t), \quad t \in [0, T], \quad X(0) = X_0.
$$
\n(SPDE)

$$
dX(t)=[AX(t)+F(X(t))]dt+G(X(t))dW(t),\quad t\in[0,T],\quad X(0)=X_0.
$$
\n(SPDE)

• $A: D(A) \subset H \rightarrow H$ is a densely defined, self-adjoint, linear operator. Further, A generates an analytic semigroup $(\mathcal{S}(t)=e^{\mathcal{A}t}, t\geq 0)\subset \mathcal{L}(\mathcal{H})$ and is boundedly invertible. (e.g. $A := \triangle$

$$
dX(t)=[AX(t)+F(X(t))]dt+G(X(t))dW(t),\quad t\in[0,T],\quad X(0)=X_0.
$$
\n(SPDE)

- \bullet A : $D(A) \subset H \rightarrow H$ is a densely defined, self-adjoint, linear operator. Further, A generates an analytic semigroup $(\mathcal{S}(t)=e^{\mathcal{A}t}, t\geq 0)\subset \mathcal{L}(\mathcal{H})$ and is boundedly invertible. (e.g. $A := \triangle$
- $F: H \rightarrow H$ is a (Lipschitz) non-linearity.

$$
dX(t)=[AX(t)+F(X(t))]dt+G(X(t))dW(t),\quad t\in[0,T],\quad X(0)=X_0.
$$
\n(SPDE)

- \bullet A : $D(A) \subset H \rightarrow H$ is a densely defined, self-adjoint, linear operator. Further, A generates an analytic semigroup $(\mathcal{S}(t)=e^{\mathcal{A}t}, t\geq 0)\subset \mathcal{L}(\mathcal{H})$ and is boundedly invertible. (e.g. $A := \triangle$
- $F: H \rightarrow H$ is a (Lipschitz) non-linearity.
- $W: \Omega \times [0, T] \rightarrow H$ is a Q-Wiener process with trace class covariance operator $Q\in \mathcal{L}_1^+(H).$

$$
dX(t)=[AX(t)+F(X(t))]dt+G(X(t))dW(t),\quad t\in[0,T],\quad X(0)=X_0.
$$
\n(SPDE)

- \bullet A : $D(A) \subset H \rightarrow H$ is a densely defined, self-adjoint, linear operator. Further, A generates an analytic semigroup $(\mathcal{S}(t)=e^{\mathcal{A}t}, t\geq 0)\subset \mathcal{L}(\mathcal{H})$ and is boundedly invertible. (e.g. $A := \triangle$
- $F: H \rightarrow H$ is a (Lipschitz) non-linearity.
- $W : \Omega \times [0, T] \rightarrow H$ is a Q-Wiener process with trace class covariance operator $Q\in \mathcal{L}_1^+(H).$
- G : $H \rightarrow \mathcal{L}_{HS}(\mathcal{H}; H)$ is Lipschitz, where $\mathcal{H} := Q^{1/2}H$ is the RKHS associated to Q.

$$
dX(t)=[AX(t)+F(X(t))]dt+G(X(t))dW(t),\quad t\in[0,T],\quad X(0)=X_0.
$$
\n(SPDE)

- \bullet A : $D(A) \subset H \rightarrow H$ is a densely defined, self-adjoint, linear operator. Further, A generates an analytic semigroup $(\mathcal{S}(t)=e^{\mathcal{A}t}, t\geq 0)\subset \mathcal{L}(\mathcal{H})$ and is boundedly invertible. (e.g. $A := \triangle$
- $F: H \rightarrow H$ is a (Lipschitz) non-linearity.
- $W : \Omega \times [0, T] \rightarrow H$ is a Q-Wiener process with trace class covariance operator $Q\in \mathcal{L}_1^+(H).$
- **•** *G* : *H* → $\mathcal{L}_{HS}(\mathcal{H}; H)$ is Lipschitz, where $\mathcal{H} := Q^{1/2}H$ is the RKHS associated to Q.
- $X_0 \in L^2(\Omega; H).$

There is a unique mild solution $X : \Omega \times [0, T] \rightarrow H$ to [\(SPDE\)](#page-13-0), given by

$$
X(t)=S(t)X_0+\int_0^tS(t-s)F(X(s))ds+\int_0^tS(t-s)G(X(s))dW(s),
$$

for $t\in [0,\,T].$ Under mild assumptions: $X(t)\in L^p(\Omega;\dot{H}^{\alpha})$ for some $\alpha > 0$, $t \in [0, T]$ and $H^{\alpha} := D((-A)^{\alpha/2})$.

Pathwise approximations

• Spatial approximation: Replace H by a discrete subspace V_N with $\dim(V_N) = N \in \mathbb{N}$ and let $P_N : H \to V_N$ be the ONP onto V_N . The discrete operator $A_N: V_N \to V_N$ generates a semigroup $S_N = (S_N(t), t > 0)$ on V_N .

Pathwise approximations

- Spatial approximation: Replace H by a discrete subspace V_N with $\dim(V_N) = N \in \mathbb{N}$ and let $P_N : H \to V_N$ be the ONP onto V_N . The discrete operator $A_N: V_N \to V_N$ generates a semigroup $S_N = (S_N(t), t > 0)$ on V_N .
- Noise approximation: Let $(e_k, k \in \mathbb{N})$ denote the (orthonormal) eigenbasis of Q . We use a truncated Karhunen-Loève expansion to approximate W via

$$
W(t) \approx W_K(t) := \sum_{k=1}^K (W(t), e_k)_{H} e_k, \quad K \in \mathbb{N}.
$$

where $\{(W(t), e_k)_{H}\}_k$ is a sequence of real-valued and independent Brownian motions with variance $\eta_k = (Qe_k, e_k)_H$ (the k'th eigenvalue of Q).

• Time stepping: Use $M \in \mathbb{N}$ time steps and a rational approximation $r(\Delta t A_N) \approx S_N(\Delta t)$ for $\Delta t = T/M$.

$$
r(\Delta t A_N)v=\sum_{n=1}^N r(\Delta t \widetilde{\lambda}_n)(v,\widetilde{f}_n)_{H}\widetilde{f}_n, \quad v\in H.
$$

given the H -orthonormal eigenbasis $(f_1, \ldots, f_N) \subset V_N$ of eigenfunctions of $(-A_N)$, with corresponding non-decreasing eigenvalues $(\lambda_1, \ldots, \lambda_N)$.

Assumptions on pathwise approximations

- **1** The rational approximation r of S_N is of order $q \in \mathbb{N}$ and stable. That is, $r(z)=e^{-z}+\mathcal{O}(z^{q+1})$ as $z\to 0,$ $|r(z)|< 1$ for $z> 0$ and $\lim_{z\to\infty} r(z) = 0.$
- **2** Subspace approximation property: Fix $\alpha > 0$ and let $(V_N, N \in \mathbb{N})$ be a sequence of subspaces $V_N \subset V$ such that dim(V_N) = N. There are constants $C, \widetilde{\alpha} > 0$, depending on α and d, such that for any $N \in \mathbb{N}$ and any $v \in H^{\alpha}$ there holds

$$
\|\nu-P_N\nu\|_H\le CN^{-\widetilde{\alpha}}\|\nu\|_{\dot{H}^\alpha},\quad\text{and}\quad\|A_N^{\min(\alpha,2)/2}P_N\nu\|_H\le C\|\nu\|_{\dot{H}^{\min(\alpha,2)}}.
$$

3 Strong convergence: There are constants $C, \tilde{\alpha}, \beta > 0$ such that for $p \in (0, 8]$ and all discretization parameters $M, N, K \in \mathbb{N}$ there holds the strong error estimate

$$
\max_{m=0,\ldots,M} \|X(m\Delta t)-Y^{N,K}_m\|_{L^p(\Omega;H)}\leq C\left(M^{-1/2}+N^{-\widetilde{\alpha}}+K^{-\beta}\right).
$$

Truncated Milstein scheme

$$
X_N(t) = S_N(t)P_NX_0 + \int_0^t S_N(t-s)P_NF(X_N(s))ds
$$

+
$$
\int_0^t S_N(t-s)P_NG(X_N(s))dW(s).
$$

From now on, assume $F \equiv 0$. For fixed M, N, K, the truncated Milstein iteration is obtained using first order Taylor expansion of G and reads

Truncated Milstein scheme

$$
X_N(t) = S_N(t)P_NX_0 + \int_0^t S_N(t-s)P_NF(X_N(s))ds
$$

+
$$
\int_0^t S_N(t-s)P_NG(X_N(s))dW(s).
$$

From now on, assume $F \equiv 0$. For fixed M, N, K, the truncated Milstein iteration is obtained using first order Taylor expansion of G and reads

$$
Y_{m+1}^{N,K} = r(\Delta t A_N) P_N Y_m^{N,K} + r(\Delta t A_N) P_N G(Y_m^{N,K}) \Delta_m W_K
$$

Truncated Milstein scheme

$$
X_N(t) = S_N(t)P_NX_0 + \int_0^t S_N(t-s)P_NF(X_N(s))ds
$$

+
$$
\int_0^t S_N(t-s)P_NG(X_N(s))dW(s).
$$

From now on, assume $F \equiv 0$. For fixed M, N, K, the truncated Milstein iteration is obtained using first order Taylor expansion of G and reads

$$
Y_{m+1}^{N,K} = r(\Delta t A_N) P_N Y_m^{N,K} + r(\Delta t A_N) P_N G(Y_m^{N,K}) \Delta_m W_K + \frac{r(\Delta t A_N) P_N \sum_{k,l=1}^K G'(Y_m^{N,K}) (P_N G(Y_m^{N,K}) \sqrt{\eta_l} e_l)}{\sqrt{\eta_k} e_k(\Delta_m w_k \Delta_m w_l - \delta_{k,l} \Delta t)}.
$$

where w_k are standard Brownian processes and ($e_k, k \in \mathbb{N}$) denote the eigenfunctions of Q with corresponding eigenvalues $(\eta_k, k \in \mathbb{N}) \subset \mathbb{R}_{\geq 0}$ in decaying order. [Antithetic Milstein scheme for SPDEs](#page-0-0) KAUST, 28 May, 2024 14 / 27 We introduce a continuous, square-integrable, $\mathcal{L}_1(H)$ -valued, martingale on $[t_m, T]$

$$
\mathcal{W}_{m,\mathcal{K}}(s):=(W_{\mathcal{K}}(s)-W_{\mathcal{K}}(t_m))\otimes(W_{\mathcal{K}}(s)-W_{\mathcal{K}}(t_m))-(s-t_m)\sum_{k=1}^K\eta_k\,e_k\otimes e_k,
$$

with a corresponding $\mathcal{L}_1(H)$ -valued increment

$$
\Delta_m \mathcal{W}_{m,K} := \Delta_m W_K \otimes \Delta_m W_K - \Delta t \sum_{k=1}^K \eta_k e_k \otimes e_k.
$$

 $\overline{ }$

We introduce a continuous, square-integrable, $\mathcal{L}_1(H)$ -valued, martingale on $[t_m, T]$

$$
\mathcal{W}_{m,\mathsf{K}}(s):=(W_{\mathsf{K}}(s)-W_{\mathsf{K}}(t_m))\otimes(W_{\mathsf{K}}(s)-W_{\mathsf{K}}(t_m))-(s-t_m)\sum_{k=1}^K\eta_k\,e_k\otimes e_k,
$$

with a corresponding $\mathcal{L}_1(H)$ -valued increment

$$
\Delta_m \mathcal{W}_{m,K} := \Delta_m W_K \otimes \Delta_m W_K - \Delta t \sum_{k=1}^K \eta_k e_k \otimes e_k.
$$

And defined $G : H \to \mathcal{L}_{HS}(\mathcal{L}_{HS}(H); H)$ such that the truncated Milstein is written as

$$
Y_{m+1}^{N,K}=r(\Delta t A_N)P_N\Big(Y_m^{N,K}+G(Y_m^{N,K})\Delta_m W_K+\mathcal{G}(Y_m^{N,K})\Delta_m \mathcal{W}_{m,K}\Big).
$$

 $\overline{ }$

Fix M, N, $K \in \mathbb{N}$ and let the coarse scale discretization be given by

 $Y_{m+1}^c = r(\Delta t A_N) P_N(Y_m^c + G(Y_m^c) \Delta_m W_K + \mathcal{G}(Y_m^c) \Delta_m W_{m,K})$ for $m = 0, ..., M - 1$.

Fix M, N, $K \in \mathbb{N}$ and let the coarse scale discretization be given by

$$
Y_{m+1}^c = r(\Delta t A_N) P_N (Y_m^c + G(Y_m^c) \Delta_m W_K + \mathcal{G}(Y_m^c) \Delta_m W_{m,K})
$$

for $m = 0, ..., M - 1$.

Fine scale: Let $\delta t := \Delta t/2$ and denote for $m = 0, 1/2, 1, \ldots, M - 1/2, M$, the corresponding "fine increments" $\delta_m W_K$ and $\delta_m W_{m,K}$, so that

$$
\Delta_m W_K = \delta_{m+1/2} W_K + \delta_m W_K
$$

\n
$$
\Delta_m W_{m,K_f} = \delta_{m+1/2} W_{m,K_f} + \delta_m W_{m,K_f}
$$

\n+

Fix M, N, $K \in \mathbb{N}$ and let the coarse scale discretization be given by

$$
Y_{m+1}^c = r(\Delta t A_N) P_N (Y_m^c + G(Y_m^c) \Delta_m W_K + \mathcal{G}(Y_m^c) \Delta_m W_{m,K})
$$

for $m = 0, ..., M - 1$.

Fine scale: Let $\delta t := \Delta t/2$ and denote for $m = 0, 1/2, 1, \ldots, M - 1/2, M$, the corresponding "fine increments" $\delta_m W_K$ and $\delta_m W_{m,K}$, so that

$$
\Delta_m W_K = \delta_{m+1/2} W_K + \delta_m W_K
$$

\n
$$
\Delta_m W_{m,K_f} = \delta_{m+1/2} W_{m,K_f} + \delta_m W_{m,K_f}
$$

\n
$$
+ \delta_{m+1/2} W_{K_f} \otimes \delta_m W_{K_f} + \delta_m W_{K_f} \otimes \delta_{m+1/2} W_{K_f}
$$

The fine discretization with 2M time steps and $N_f \ge N, K_f \ge K$ is then given by

$$
Y_{m+1/2}^f = r(\delta t A_{N_f}) P_{N_f} (Y_m^f + G(Y_m^f) \delta_m W_{K_f} + \mathcal{G}(Y_m^f) \delta_m W_{m,K_f}),
$$

\n
$$
Y_{m+1}^f = r(\delta t A_{N_f}) P_{N_f} (Y_{m+1/2}^f + G(Y_{m+1/2}^f) \delta_{m+1/2} W_{K_f} + \mathcal{G}(Y_{m+1/2}^f) \delta_{m+1/2} W_{m,K_f}).
$$

The fine discretization with 2M time steps and $N_f \geq N, K_f \geq K$ is then given by

$$
Y_{m+1/2}^f = r(\delta t A_{N_f}) P_{N_f} (Y_m^f + G(Y_m^f) \delta_m W_{K_f} + \mathcal{G}(Y_m^f) \delta_m W_{m,K_f}),
$$

\n
$$
Y_{m+1}^f = r(\delta t A_{N_f}) P_{N_f} (Y_{m+1/2}^f + G(Y_{m+1/2}^f) \delta_{m+1/2} W_{K_f} + \mathcal{G}(Y_{m+1/2}^f) \delta_{m+1/2} W_{m,K_f}).
$$

The antithetic counter part of the fine discretization is

$$
Y_{m+1/2}^{a} = r(\delta t A_{N_f}) P_{N_f} (Y_m^a + G(Y_m^a) \delta_{m+1/2} W_{K_f} + \mathcal{G}(Y_m^a) \delta_{m+1/2} W_{m,K_f}),
$$

\n
$$
Y_{m+1}^{a} = r(\delta t A_{N_f}) P_{N_f} (Y_{m+1/2}^a + G(Y_{m+1/2}^a) \delta_m W_{K_f} + \mathcal{G}(Y_{m+1/2}^a) \delta_m W_{m,K_f}).
$$

We aim to estimate $\mathsf{E}[\,\Psi(X(\,\mathcal{T}))\,]$ for $\Psi\in \mathcal{C}^2_b(H;\mathbb{R})$ with MLMC.

We aim to estimate $\mathsf{E}[\,\Psi(X(\,\mathcal{T}))\,]$ for $\Psi\in \mathcal{C}^2_b(H;\mathbb{R})$ with MLMC.

Rather than using $\Psi(Y_{M}^{f})$ on the fine levels of the MLMC estimator, we use the antithetic average

$$
\overline{\Psi}_M:=\frac{\Psi(Y_M^f)+\Psi(Y_M^a)}{2}.
$$

We aim to estimate $\mathsf{E}[\,\Psi(X(\,\mathcal{T}))\,]$ for $\Psi\in \mathcal{C}^2_b(H;\mathbb{R})$ with MLMC.

Rather than using $\Psi(Y_{M}^{f})$ on the fine levels of the MLMC estimator, we use the antithetic average

$$
\overline{\Psi}_M:=\frac{\Psi(Y_M^f)+\Psi(Y_M^a)}{2}.
$$

For any $\Psi\in \mathcal{C}^2_b(H;\mathbb{R})$ it holds that that $\mathsf{E}[\,\overline{\Psi}_M\,]=\mathsf{E}[\,\Psi(\,\mathsf{Y}_M^f)\,],\quad$ (no additional bias)

We aim to estimate $\mathsf{E}[\,\Psi(X(\,\mathcal{T}))\,]$ for $\Psi\in \mathcal{C}^2_b(H;\mathbb{R})$ with MLMC.

Rather than using $\Psi(Y_{M}^{f})$ on the fine levels of the MLMC estimator, we use the antithetic average

$$
\overline{\Psi}_M:=\frac{\Psi(Y_M^f)+\Psi(Y_M^a)}{2}.
$$

For any $\Psi\in \mathcal{C}^2_b(H;\mathbb{R})$ it holds that that

- $\mathsf{E}[\,\overline{\Psi}_M\,]=\mathsf{E}[\,\Psi(\,\mathsf{Y}_M^f)\,],\quad$ (no additional bias)
- $\mathsf{E}[\, | \overline{\Psi}_M \Psi(X(T)) |^2 \,] \leq \mathcal{C} \left(M^{-1} + N^{-2\tilde{\alpha}} + K^{-2\beta} \right)$, (strong error preserved)

We aim to estimate $\mathsf{E}[\,\Psi(X(\,\mathcal{T}))\,]$ for $\Psi\in \mathcal{C}^2_b(H;\mathbb{R})$ with MLMC.

Rather than using $\Psi(Y_{M}^{f})$ on the fine levels of the MLMC estimator, we use the antithetic average

$$
\overline{\Psi}_M:=\frac{\Psi(Y_M^f)+\Psi(Y_M^a)}{2}.
$$

For any $\Psi\in \mathcal{C}^2_b(H;\mathbb{R})$ it holds that that

•
$$
E[\overline{\Psi}_M] = E[\Psi(Y_M^f)],
$$
 (no additional bias)

•
$$
E[|\overline{\Psi}_M - \Psi(X(T))|^2] \le C (M^{-1} + N^{-2\tilde{\alpha}} + K^{-2\beta}),
$$

(strong error preserved)

• For
$$
\overline{Y}_M := \frac{Y_M^f + Y_M^a}{2}
$$
 there holds
\n
$$
E[|\overline{\Psi}_M - \Psi(Y_M^c)|^2] \leq C E[||\overline{Y}_M - Y_M^c||_H^2].
$$

We aim to estimate $\mathsf{E}[\,\Psi(X(\,\mathcal{T}))\,]$ for $\Psi\in \mathcal{C}^2_b(H;\mathbb{R})$ with MLMC.

Rather than using $\Psi(Y_{M}^{f})$ on the fine levels of the MLMC estimator, we use the antithetic average

$$
\overline{\Psi}_M:=\frac{\Psi(Y_M^f)+\Psi(Y_M^a)}{2}.
$$

For any $\Psi\in \mathcal{C}^2_b(H;\mathbb{R})$ it holds that that

•
$$
E[\overline{\Psi}_M] = E[\Psi(Y_M^f)],
$$
 (no additional bias)

•
$$
E[\vert \overline{\Psi}_M - \Psi(X(T)) \vert^2] \le C \left(M^{-1} + N^{-2\tilde{\alpha}} + K^{-2\beta}\right),
$$

(strong error preserved)

• For
$$
\overline{Y}_M := \frac{Y_M^{\epsilon} + Y_M^{\epsilon}}{2}
$$
 there holds
\n
$$
E[|\overline{\Psi}_M - \Psi(Y_M^c)|^2] \leq C E[||\overline{Y}_M - Y_M^c||_H^2].
$$

 \Rightarrow "Antithetic variances" decay faster than $\mathcal{O}(M^{-1}).$

Theorem (H.-A. and A. Stein, 2023)

Let $\sup_{t\in[0,\,T]}X(t)\in L^8(\Omega;\dot{H}^\alpha)$ hold for some $\alpha\geq1$, and let $M, N_f, N, K_f, K \in \mathbb{N}$ be such that $N_f \geq N$ and $K_f \geq K$. Under suitable assumptions on F , G (twice Fréchet differentiable with bounded derivatives, linear growth, ...), X_0 and Q, there is a constant $C > 0$, independent of M, N , and K , such that the corrections in the antithetic Milstein scheme satisfy

$$
\mathsf{E}[\|\overline{Y}_M-Y_M^c\|_H^2] \leq C\left(M^{-\min(\alpha,2)}+N^{-2\tilde{\alpha}}+K^{-2\beta}\right).
$$

Recall that for the Euler/truncated Milstein scheme without antithetic correction, we have

$$
\mathsf{E}[\|Y_M^f-Y_M^c\|_H^2] \leq C\left(M^{-1}+N^{-2\tilde{\alpha}}+K^{-2\beta}\right).
$$

Proof ideas

Prove that G is Fréchet differentiable, then using a Taylor expansion of G and $\mathcal G$, write

$$
\overline{Y}_{m+1} = r(\delta t A_{N_f})^2 P_{N_f} (\overline{Y}_m + G(\overline{Y}_m) \Delta_m W_{K_f} + G(\overline{Y}_m) \Delta_m W_{m, K_f}) + \overline{\Xi}_m + \overline{O}_m,
$$

where $\overline{\Xi}_m$, \overline{O}_m : $\Omega \to H$ are random variables such that

$$
\mathsf{E}[\|\overline{\Xi}_m\|_H^2] \leq C\Delta t^2 \Big(M^{-\min(\alpha,2)} + N_f^{-2\alpha_0} + K_f^{-4\beta}\Big),
$$

\n
$$
\mathsf{E}[\overline{O}_m \, | \mathcal{F}_{t_m}] = 0 \quad \text{and} \quad \mathsf{E}[\|\overline{O}_m\|_H^2] \leq C\Delta t \Big(M^{-\min(\alpha,2)} + N_f^{-2\alpha_0} + K_f^{-4\beta}\Big).
$$

Then expand the difference $\overline{Y}_M - Y_M^c$ and use Grönwall's inequality.

Proof ideas: Regularity limit

During expansion, we will have terms of the form

$$
F(r(\delta t A_{N_f})Y_m^f) - r(\delta t A_{N_f})P_{N_f}F(Y_m^f)
$$

= $F(Y_m^f) + F'(\xi_m^2) \Big[r(\delta t A_{N_f})Y_m^f - Y_m^f \Big] - r(\delta t A_{N_f})P_{N_f}F(Y_m^f)$ (1)
= $\Big[I - r(\delta t A_{N_f})P_{N_f} \Big] F(Y_m^f) + F'(\xi_m^2) \Big[r(\delta t A_{N_f}) - I \Big] Y_m^f$

Wherein, for example,

$$
\mathsf{E}\bigg[\left\|\big[r\big(\delta t A_{N_f}\big)-I\big]Y_m^f\right\|_H^2\bigg]\leq \|r\big(\delta t A_{N_f}\big)-I\|_{\mathcal{L}(\dot{H}^\alpha,H)}^2\,\mathsf{E}\big[\,\|Y_m^f\|_{\dot{H}^\alpha}^2\,\big]
$$

Finally, this is bounded using

$$
||r(\delta t A) - I||_{\mathcal{L}(\dot{H}^{\alpha},H)} \leq ||r(\delta t A) - S(\delta t)||_{\mathcal{L}(\dot{H}^{\alpha},H)} + ||S(\delta t) - I||_{\mathcal{L}(\dot{H}^{\alpha},H)}
$$

$$
\leq C\delta t^{\alpha/2}.
$$

From (Thomée, 2007) and (Pazy, 1983). Similar bounds hold when considering G and G after using Burkholder-Davis-Gundy inequality.

Haji-Ali (HWU) [Antithetic Milstein scheme for SPDEs](#page-0-0) KAUST, 28 May, 2024 21/27

Let $\Psi\in \mathcal C^2_b(H;\mathbb R)$, $M_0\in\mathbb N$, and let $M_\ell:=M_02^\ell$ for $\ell\in\mathbb N_0.$

Let $\Psi\in \mathcal C^2_b(H;\mathbb R)$, $M_0\in\mathbb N$, and let $M_\ell:=M_02^\ell$ for $\ell\in\mathbb N_0.$ Assume that • there are $C > 0$ and $\gamma = \gamma(G) > 0$ such that

"Cost of sampling $\overline{\Psi}_M$ on level ℓ " \leq $CM_{\ell}^{1+\gamma}, \quad \forall \ell \in \mathbb{N}_0.$

Let $\Psi\in \mathcal C^2_b(H;\mathbb R)$, $M_0\in\mathbb N$, and let $M_\ell:=M_02^\ell$ for $\ell\in\mathbb N_0.$ Assume that • there are $C > 0$ and $\gamma = \gamma(G) > 0$ such that

"Cost of sampling $\overline{\Psi}_M$ on level ℓ " \leq $CM_{\ell}^{1+\gamma}, \quad \forall \ell \in \mathbb{N}_0.$

• for any $\delta \in (0,1)$ there is a constant $C = C(\Psi, \delta) > 0$ such that

$$
|\mathsf{E}[\,\Psi(X(\,\mathcal{T})\,)]-\mathsf{E}[\,\Psi(\,Y_{M_{\ell}}^{N_{\ell},K_{\ell}})\,]|\leq\mathcal{C}M_{\ell}^{-(1-\delta)},\quad\forall\ell\in\mathbb{N}_{0}.
$$

Theorem (H.-A. and A. Stein, 2023)

Under the previous conditions, there exists for any $\varepsilon \in (0, e^{-1})$ an antithetic MLMC-Milstein estimator $E_{\text{L}}^{\text{anti}}(\overline{\Psi}_M)$ such that

$$
\mathsf{E}\big[\,|E_L^{anti}(\overline{\Psi}_M)-\mathsf{E}[\,\Psi(X(T))\,]|^2\,\big]\leq \varepsilon^2.
$$

Theorem (H.-A. and A. Stein, 2023)

Under the previous conditions, there exists for any $\varepsilon \in (0, e^{-1})$ an antithetic MLMC-Milstein estimator $E_{\text{L}}^{\text{anti}}(\overline{\Psi}_M)$ such that

$$
\mathsf{E}\big[\,|E_L^{anti}(\overline{\Psi}_M)-\mathsf{E}[\,\Psi(X(T))\,]|^2\,\big]\leq \varepsilon^2.
$$

The computational complexity C_{ML} to compute a realization of $E_L^{anti}(\overline{\Psi}_M)$ is bounded by

$$
\mathcal{C}_{\text{ML}} \leq \begin{cases} C\varepsilon^{-2}, & \min(\alpha,2) > 1 + \gamma, \\ C\varepsilon^{-2}|\log(\varepsilon)|^2, & \min(\alpha,2) = 1 + \gamma, \\ C\varepsilon^{-2 - \frac{1 + \gamma - \min(\alpha,2)}{1 - \delta}}, & \min(\alpha,2) < 1 + \gamma. \end{cases}
$$

Let $\mathcal{D} = [0,1]^d$, $d \in \{1,2,3\}$, $H := L^2(\mathcal{D})$ and let $A := \triangle$ be the Laplace-operator with hom. Dirichlet BCs. The eigenpairs $((\lambda_n,f_n), k\in \mathbb{N})$ of $(-A)$ are given in closed form $(\lambda_n\propto n^{2/d})$

Let $\mathcal{D} = [0,1]^d$, $d \in \{1,2,3\}$, $H := L^2(\mathcal{D})$ and let $A := \triangle$ be the Laplace-operator with hom. Dirichlet BCs. The eigenpairs $((\lambda_n,f_n), k\in \mathbb{N})$ of $(-A)$ are given in closed form $(\lambda_n\propto n^{2/d})$ W is a Q-Wiener process with operator $Q = ((-\triangle)^{-s})$ for a

smoothness parameter $s > d/2$.

- Let $\mathcal{D} = [0,1]^d$, $d \in \{1,2,3\}$, $H := L^2(\mathcal{D})$ and let $A := \triangle$ be the Laplace-operator with hom. Dirichlet BCs. The eigenpairs $((\lambda_n,f_n), k\in \mathbb{N})$ of $(-A)$ are given in closed form $(\lambda_n\propto n^{2/d})$
- W is a Q-Wiener process with operator $Q = ((-\triangle)^{-s})$ for a smoothness parameter $s > d/2$.
- We consider the stochastic heat equation given by

$$
dX(t) = \triangle X(t)dt + G(X(t))dW(t), \quad X(0) = X_0, \qquad (2)
$$

for a random $X_0 \in L^8(\Omega;\dot{H}^2)$ and with diffusion coefficient $G : H \mapsto \mathcal{L}_{H}(\mathcal{H}; H)$ given by (for $v \in H, u \in \mathcal{H}$)

$$
G(v)u:=\sum_{j=1}^{\infty}(v,e_j)_{H}e_{j+1}(u,\sqrt{\eta_{j+1}}e_{j+1})_{\mathcal{H}}+j^{-1/2-\varepsilon}e_{j}(u,\sqrt{\eta_{j}}e_{j})_{\mathcal{H}}.
$$

- Let $\mathcal{D} = [0,1]^d$, $d \in \{1,2,3\}$, $H := L^2(\mathcal{D})$ and let $A := \triangle$ be the Laplace-operator with hom. Dirichlet BCs. The eigenpairs $((\lambda_n,f_n), k\in \mathbb{N})$ of $(-A)$ are given in closed form $(\lambda_n\propto n^{2/d})$
- W is a Q-Wiener process with operator $Q = ((-\triangle)^{-s})$ for a smoothness parameter $s > d/2$.
- We consider the stochastic heat equation given by

$$
dX(t) = \triangle X(t)dt + G(X(t))dW(t), \quad X(0) = X_0, \qquad (2)
$$

for a random $X_0 \in L^8(\Omega;\dot{H}^2)$ and with diffusion coefficient $G : H \mapsto \mathcal{L}_{HS}(\mathcal{H}; H)$ given by (for $v \in H, u \in \mathcal{H}$)

$$
G(v)u:=\sum_{j=1}^{\infty}(v,e_j)_{H}e_{j+1}(u,\sqrt{\eta_{j+1}}e_{j+1})_{\mathcal{H}}+j^{-1/2-\varepsilon}e_{j}(u,\sqrt{\eta_{j}}e_{j})_{\mathcal{H}}.
$$

It holds that $X(t) \in L^8(\Omega; \dot{H}^\alpha)$ for $\alpha \in [1, \min(1+s, 2)).$

- Let $\mathcal{D} = [0,1]^d$, $d \in \{1,2,3\}$, $H := L^2(\mathcal{D})$ and let $A := \triangle$ be the Laplace-operator with hom. Dirichlet BCs. The eigenpairs $((\lambda_n,f_n), k\in \mathbb{N})$ of $(-A)$ are given in closed form $(\lambda_n\propto n^{2/d})$
- W is a Q-Wiener process with operator $Q = ((-\triangle)^{-s})$ for a smoothness parameter $s > d/2$.
- We consider the stochastic heat equation given by

$$
dX(t) = \triangle X(t)dt + G(X(t))dW(t), \quad X(0) = X_0, \qquad (2)
$$

for a random $X_0 \in L^8(\Omega;\dot{H}^2)$ and with diffusion coefficient $G : H \mapsto \mathcal{L}_{HS}(\mathcal{H}; H)$ given by (for $v \in H, u \in \mathcal{H}$)

$$
G(v)u:=\sum_{j=1}^{\infty}(v,e_j)_{H}e_{j+1}(u,\sqrt{\eta_{j+1}}e_{j+1})_{\mathcal{H}}+j^{-1/2-\varepsilon}e_{j}(u,\sqrt{\eta_{j}}e_{j})_{\mathcal{H}}.
$$

- It holds that $X(t) \in L^8(\Omega; \dot{H}^\alpha)$ for $\alpha \in [1, \min(1+s, 2)).$
- We combine the antithetic Milstein scheme with a spectral Galerkin approach and truncated Karhunen-Loève expansions for W . All errors are balanced via $\tilde{\alpha} = \alpha$ and $\beta = s/d - 1/2$.
Antithetic Milstein scheme for SPD [Antithetic Milstein scheme for SPDEs](#page-0-0) KAUST, 28 May, 2024 24 / 27

Figure: (left) Shows the the variance for the antithetic estimator and the variance for the "Standard" truncated Milstein estimator without the antithetic correction, for the smoothness parameter $s = 3d/4$. (right) Shows the relative variance decay between the two estimators, for different smoothness parameters s. The variance estimates were obtained using Monte Carlo sampling with at least 4000 samples. Recall $\alpha < \min(1 + s, 2)$.

Figure: (left) Shows the the variance for the antithetic estimator and the variance for the "Standard" truncated Milstein estimator without the antithetic correction, for the smoothness parameter $s = 3d/4$. (right) Shows the relative variance decay between the two estimators, for different smoothness parameters s. The variance estimates were obtained using Monte Carlo sampling with at least 4000 samples. Recall $\alpha < \min(1 + s, 2)$.

Figure: (left) Shows the the variance for the antithetic estimator and the variance for the "Standard" truncated Milstein estimator without the antithetic correction, for the smoothness parameter $s = 3d/4$. (right) Shows the relative variance decay between the two estimators, for different smoothness parameters s. The variance estimates were obtained using Monte Carlo sampling with at least 4000 samples. Recall $\alpha < \min(1 + s, 2)$.

Conclusions and outlook

Summary:

- Infinite-dimensional antithetic Milstein scheme for (parabolic) SPDEs.
- Avoids simulation of iterated integrals.
- Improved complexity (under certain conditions).
- Increase in efficiency depends on smoothness of the mild solution.

Conclusions and outlook

Summary:

- Infinite-dimensional antithetic Milstein scheme for (parabolic) SPDEs.
- Avoids simulation of iterated integrals.
- **•** Improved complexity (under certain conditions).
- Increase in efficiency depends on smoothness of the mild solution.

Next steps:

- Treatment of noise approximation (antithetic/improved).
- Milstein (and truncated Milstein) has a quadratic cost for dense operators!
- Develop an antithetic Lévy area approximation for path dependent estimates.
- SPDEs with Lévy noise (\Rightarrow BDG inequalities).
- Relax assumptions on F and G (Lipschitz and piece-wise twice-differentiable).
- First-order hyperbolic SPDEs (exploit weak formulation).
- Tamed schemes for non-Lipschitz drift coefficients.

Haji-Ali (HWU) [Antithetic Milstein scheme for SPDEs](#page-0-0) KAUST, 28 May, 2024 26 / 27

A.-L. H.-A. and A. Stein: An Antithetic Multilevel Monte Carlo-Milstein Scheme for Stochastic Partial Differential Equations, preprint arXiv:2307.14169, 2023.

M.B. Giles and L. Szpruch Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation, The Annals of Applied Probability, 4:24, 1585–1620, 2014

R. Kruse: Strong and Weak Approximation of Semilinear Stochastic Evolution Equations, Springer, 2014.