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Motivation: CVA Capital Charge

Adjusted Valuet = Risk-Neutral Valuet − CVAt

▶ The value of a financial portfolio at time t is reduced
according to the credit valuation adjustment CVAt , to
account for the possibility of counterparty default.

▶ Through the credit valuation adjustment, a financial institution
can observe losses due to the event that a counterparty
becomes more likely to default - responsible for two thirds of
losses from counterparty risk factors in 2008 financial crisis.

▶ Capital charge based on a value-at-risk formula introduced in
Basel III accords to mitigate such risks.
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Motivation: CVA Capital Charge (Nested Simulation)

▶ Given market at time 0 - simulate GH -measurable market and
credit risk factors under the physical measure P at short risk
horizon 0 < H ≪ 1.
▶ Given risk factors at time H, simulate instances of default τ

under the risk-neutral measure Q occurring before contract
maturity T > 0.

▶ Given the (risk-neutral) market state at default time τ < T ,
simulate random losses π(ST ) based on the asset values ST

under the risk-neutral measure.

Value-at-Risk formula:

φ = P
[

CVAH

BH
− CVA0 > λφ

]
,

CVAt = Bt EQ
[
χt≤τ≤T LGDmax

{
EQ[B−1

T π(ST )
∣∣Gτ

]
, 0
} ∣∣∣Gt

]
.

2 / 19



Overview
Let X ,Y ,Z be random variables and f : R× Rd → R be Lipschitz
in both arguments. Consider the system

φ = P[U0(Z ) > λφ ]

U0(Z ) = E[ f (U1(Y ),Y ) |Z ]

U1(Y ) = E[X |Y ].

Key features:

▶ Recursive approximation of nested expectations U0(Z ) and
U1(Y ), paired with approximation of the variables X ,Y and Z .

▶ Approximation of discontinuous observables:

φ = P[Q > 0 ] = E[χQ>0 ].

Nested Monte Carlo simulation has O(ε−5) cost to attain an
accuracy ε.
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Multilevel Monte Carlo
Want to approximate

E[Q ]

given approximate samples Q ≈ Qℓ, with

Cost(Qℓ) ∝ 2γℓ

|E[Q − Qℓ ]| ∝ 2−αℓ

Var[Q − Qℓ ] ∝ 2−βℓ.

Then, let

E[∆ℓQ ] =

{
E[Qℓ − Qℓ−1 ] ℓ > 0
E[Q0 ] ℓ = 0

E[Q ] ≈ E[QL ] =
L∑

ℓ=0

E[∆ℓQ ].
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Multilevel Monte Carlo

Want to approximate
E[Q ]

given approximate samples Q ≈ Qℓ, with

Cost(Qℓ) ∝ 2γℓ

|E[Q − Qℓ ]| ∝ 2−αℓ

Var[Q − Qℓ ] ∝ 2−βℓ.

The cost of attaining root mean square error ε is of order

ε−2


1 β > γ

|log ε|2 β = γ

ε−(γ−β)/α β < γ.
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Unbiased Multilevel Monte Carlo [Rhee, Glynn, 2015]

E[Q ] =
∞∑
ℓ=0

E[∆ℓQ ] = E
[
(∆κQ) 2ζκ/Cζ

]
where κ is a random, non-negative integer with probability mass

P[κ = ℓ ] = Cζ2−ζℓ.

Provided,
Cost(Qℓ) ∝ 2γℓ

E[ |Q − Qℓ|q ] ∝ 2−qβℓ/2,

(∆κQ) 2ζκ/Cζ has finite expected sampling cost and pth moment
when

γ < ζ <
p

p − 1
β

2
=⇒ p < min

{
q,

1
1 − β/2ζ

}
.

Example 1: β = 2γ = 2, ζ = (β + γ)/2 = 3/2, q → ∞ ⇒ p < 3.
Example 2: Same, with
q = 3 − ε, ζ < (3 − ε)/(2 − ε) ⇒ p < 3 − ε.
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Overview

Let X ,Y ,Z be random variables and f : R× Rd → R sending
(u, y) 7→ f (u, y) be Lipschitz in u and y . Consider the system

φ = P[U0(Z ) > λφ ]

U0(Z ) = E[ f (U1(Y ),Y ) |Z ]

U1(Y ) = E[X |Y ].

Key features:

▶ Recursive approximation of nested expectations U0(Z ) and
U1(Y ), paired with approximation of the variables X ,Y and Z .

▶ Approximation of discontinuous observables:

φ = P[Q > 0 ] = E[χQ>0 ].
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Nested Simulation
Consider now the nested pair of expectations

U0 := E[ f (U1(Y ), Y ) ]

U1(Y ) := E[X |Y ]

Given exact samples of X and Y : Multilevel Monte Carlo with
antithetic nested Monte Carlo averages for E[X |Y ].
[Bourgey, De Marco, Gobet, 2020], [Bujok, Hambly, Reisinger, 2015], [Giles,
H-A, 2019].

Problem: Exact samples of X and Y are not available. Instead,
given Y = y we approximate X ≈ Xk(y) using a Milstein scheme.
Similarly, Y ≈ Yℓ.

Solution: Combine nested ‘inner’ multilevel Monte Carlo estimate
of U1(y), given Y = y , within an ‘outer’ multilevel Monte Carlo
estimate of U0.

7 / 19



Antithetic Multilevel Difference
Consider now the nested pair of expectations

U0 := E[ f (U1(Y ), Y ) ]

U1(Y ) := E[X |Y ]

Û1,ℓ(y) :=
ℓ∑

k=0

1
Nℓ,k

Nℓ,k∑
n=1

∆
(n)
k X (y)

Nℓ,k ∝ 2ℓ−k .

Antithetic multilevel difference:

∆ℓf := f
(
Û1,ℓ(Yℓ),Yℓ

)
− 1

2

1∑
i=0

f
(
Û

(i)
1,ℓ−1(Yℓ−1),Yℓ−1

)
,

where

Û1,ℓ(y)−
1
2

1∑
i=0

Û
(i)
1,ℓ−1(y) = O(∆ℓX ).
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Convergence
Theorem ([H-A, Spence, 2023])
Assume f is piecewise-twice differentiable and with bounded first
and second derivative, and that for β ≥ 1 and q ≥ 2

Cost(Xk(·)) + Cost(Yℓ) ∝ 2k + 2ℓ

E[ ∥Xk(Yℓ)− Xk−1(Yℓ)∥q ] + E[ ∥Yℓ − Yℓ−1∥q ] ∝ 2−qβk/2 + 2−qβℓ/2

E[ ∥Xk(Y )− Xk(Yℓ)∥q ] ∝ 2−qβℓ/2.

Then,
Cost(∆ℓf ) ∝ ℓ2ℓ

Var[∆ℓf ] ∝ 2−min{β,3q/2(q+1)}ℓ.

Consequently, the cost of estimating U0 to accuracy ε is of order

ε−2

{
1 β > 1
|log ε|3 β = 1.
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Extensions

▶ Can be applied recursively to consider repeatedly nested
expectations of the form

Uj(Yj) = E[ fj+1(Uj+1(Yj+1),Yj+1) |Yj ]

UT−1(YT−1) = E[ fT (YT ) |YT−1 ].

▶ Bermudan option pricing/optimal control.

▶ Can randomise the approximation level ℓ in the terms ∆ℓX
and ∆ℓf to obtain unbiased estimates of U1(Y ) and U0.
▶ [Zhou, Wang, Blanchet, Glynn, 2022], [Syed, Wang, 2023].
▶ Reduces the number of finite moments - leading to large

variance and sampling cost for repeatedly nested expectations
as above.

▶ Can be extended to include antithetic path simulation of Y .
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Overview

Let X ,Y ,Z be random variables and f : R× Rd → R sending
(u, y) 7→ f (u, y) be Lipschitz in u and y . Consider the system

φ = P[U0(Z ) > λφ ]

U0(Z ) = E[ f (U1(Y ),Y ) |Z ]

U1(Y ) = E[X |Y ].

Key features:

▶ Recursive approximation of nested expectations U0(Z ) and
U1(Y ), paired with approximation of the variables X ,Y and Z .

▶ Approximation of discontinuous observables:

φ = P[Q > 0 ] = E[χQ>0 ].
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Framework

P[Q > 0 ] = E[χQ>0 ] ≈ E[χQ0>0 ] +
L∑

ℓ=1

E
[
χQℓ>0 − χQℓ−1>0

]
Theorem
For root mean square error ε and (random), positive-valued,
normalising factor σℓ

Cost(Qℓ) ∝ 2γℓ

E
[
|Q − Qℓ|qσ−q

ℓ

]
∝ 2−qβℓ/2 =⇒

P[ |Qℓ/σℓ| ≤ x ] ∝ x

MLMC
Cost ∝


ε−2 β > q+1

q 2γ

ε−2|log ε|2 β = q+1
q 2γ

ε
−1−2( q+1

q
)( γ

β
)

β < q+1
q 2γ.

Qℓ

Qℓ
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Previous Research
▶ Explicit smoothing χx>0 ≈ g(x):

[Giles, Nagapetyan, Ritter, 2015].

▶ Numerical smoothing:
[Bayer, Hammouda, Tempone, 2023], [Giles, Debrabant, Rößler,
2019].

▶ Path branching:
[Giles, H-A, 2022].

▶ Quasi-Monte Carlo:
[Xu, He, Wang, 2020].

▶ Adaptivity:
▶ For partial differential equations with random coefficients

[Elfverson, Hellman, Målqvist, 2016].
▶ For nested expectations Q = E[X |Y ]

[Broadie, Du, Moallemi, 2011], [Giles, H-A, 2019].
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Adaptivity

E[χQ>0 ] ≈ E[χQ0>0 ] +
L∑

ℓ=1

E
[
χQℓ+ηℓ

>0 − χQℓ−1+ηℓ−1>0

]
Theorem ([H-A, Spence, Teckentrup, 2022])
Let ηℓ be such that |Qℓ+ηℓ | ≥ σℓ+ηℓ2

γ(ℓ(1−r)−ηℓ)/r or ηℓ = ℓ. Then,
for a root-mean-square error ε > 0

Cost(Qℓ) ∝ 2γℓ

E
[
|Q − Qℓ|qσ−q

ℓ

]
∝ 2−qβℓ/2 =⇒

P[ |Qℓ/σℓ| ≤ x ] ∝ x

Adaptive
MLMC
Cost

∝


ε−2 β > q+1

q γ

ε−2|log ε|2 β = q+1
q γ

ε
−2( q+1

q
)( γ

β
)

β < q+1
q γ.

Qℓ

Qℓ

Qℓ
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Application: Digital Options

P[ ST > K ], dSt = a(St)dt + b(St)dWt

Euler-Maruyama Milstein
Standard Adaptive Standard Adaptive

O(ε−2|log ε|2) O(ε−5/2)

10−4 10−3 10−2 10−1

100

101

102

103

Normalised ε

C
os

t×
ε2
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CVA Capital Charge [Giles, H-A, Spence, 2023]

φ = P
[

CVAH

BH
− CVA0 > λφ

]
,

CVAt = Bt EQ
[
χt≤τ≤T LGDmax

{
EQ[B−1

T π(ST )
∣∣Gτ

]
, 0
} ∣∣∣Gt

]
.

Using a combination of
▶ Milstein simulation of the assets ST
▶ Nested multilevel Monte Carlo estimation
▶ Unbiased multilevel Monte Carlo sampling
▶ Variance reduction techniques,

we can express

CVAH

BH
− CVA0 = E[∆ |Z ],

where Z captures all GH -measurable risk-factors and ∆ is a random
variable which can be sampled exactly.
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CVA Capital Charge [Giles, H-A, Spence, 2023]

φ = P[U0(Z ) > λφ ]

U0(Z ) := E[∆ |Z ]

▶ Approximate

U0(Z ) ≈ Û0,ℓ(Z ) =
1
Nℓ

Nℓ∑
n=1

∆(n)(Z ).

▶ Adaptively add more independent samples according to the
value of |Û0,ℓ(Z )|/σℓ, where σ2

ℓ is the conditional sample
variance.
▶ Normalizing by σℓ can mitigate issues caused by unbiased

multilevel Monte Carlo leading to fewer moments of ∆(Z ).
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CVA: Numerical Results

φ = P[U0(Z ) > λφ ]

Recursive Multilevel Adaptive
ε−5 (Monte Carlo) ε−2(log ε)2 ε−5/2

10−2 10−1
103

104

105

106

Normalised ε

C
os

t
×
ε2
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Conclusion
▶ Multilevel Monte Carlo methods can be extended recursively to

systems of repeatedly nested expectations.
▶ Adaptive sampling provides a general framework to improve

multilevel Monte Carlo methods for problems which contain
discontinuous functions of approximated random variables.

▶ A combination of both approaches can provide significant
gains over nested Monte Carlo simulation for problems arising
in credit risk.

Risk measures:
▶ The value-at-risk solves φ = P[Q > λφ ]. See recent work by

[Crepey, Frikha, Louzi, Spence, 2024] which utilizes the adaptive
techniques discussed here with a multilevel stochastic
approximation techniques to find the quantile λφ.

▶ Conditional value-at-risk is
E[Q |Q > λφ ] = infx f (x) = f (λφ) for a given φ and
f (x) = x + E[ max{Q − x , 0} ]/φ [Rockafellar, Uryasev, 1999].
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