Efficient Risk Estimation for the Credit Valuation Adjustment

Abdul-Lateef Haji-Ali Joint work with Mike Giles and Jonathan Spence

Heriot-Watt University

September 4, 2024

Motivation: CVA Capital Charge

Adjusted Value_t = Risk-Neutral Value_t – CVA_t

- \blacktriangleright The value of a financial portfolio at time t is reduced according to the credit valuation adjustment CVA_t , to account for the possibility of counterparty default.
- \blacktriangleright Through the credit valuation adjustment, a financial institution can observe losses due to the event that a counterparty becomes more likely to default - responsible for two thirds of losses from counterparty risk factors in 2008 financial crisis.
- ▶ Capital charge based on a value-at-risk formula introduced in Basel III accords to mitigate such risks.

Motivation: CVA Capital Charge (Nested Simulation)

- ▶ Given market at time 0 simulate G_H -measurable market and credit risk factors under the physical measure P at short risk horizon $0 < H \ll 1$.
	- \blacktriangleright Given risk factors at time H , simulate instances of default τ under the risk-neutral measure Q occurring before contract maturity $T > 0$.
		- ▶ Given the (risk-neutral) market state at default time $\tau < T$, simulate random losses $\pi(S_T)$ based on the asset values S_T under the risk-neutral measure.

Value-at-Risk formula:

$$
\varphi = P \left[\frac{\text{CVA}_{H}}{B_{H}} - \text{CVA}_{0} > \lambda_{\varphi} \right],
$$

\nCVA_t = B_t $E^{Q} \left[\chi_{t \leq \tau \leq T} \text{LGD max} \left\{ E^{Q} \left[B_{T}^{-1} \pi(S_{T}) \, | \, \mathcal{G}_{\tau} \right], 0 \right\} \, | \, \mathcal{G}_{t} \right].$

Overview

Let $X,$ $Y,$ Z be random variables and $\,f: \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ be Lipschitz in both arguments. Consider the system

$$
\varphi = P[U_0(Z) > \lambda_{\varphi}]
$$

$$
U_0(Z) = E[f(U_1(Y), Y) | Z]
$$

$$
U_1(Y) = E[X | Y].
$$

Key features:

- Recursive approximation of nested expectations $U_0(Z)$ and $U_1(Y)$, paired with approximation of the variables X, Y and Z.
- ▶ Approximation of discontinuous observables:

$$
\varphi = P[Q > 0] = E[X_{Q>0}].
$$

Nested Monte Carlo simulation has $\mathcal{O}(\varepsilon^{-5})$ cost to attain an accuracy ε .

Multilevel Monte Carlo

Want to approximate

 $E[Q]$

given approximate samples $Q \approx Q_\ell$, with

 $\mathsf{Cost} (Q_\ell) \propto 2^{\gamma \ell}$ $|\mathsf{E}[\,Q - Q_\ell\,]| \propto 2^{-\alpha \ell}$ $\mathsf{Var}[\,Q - Q_\ell\,] \propto 2^{-\beta \ell}.$

Then, let

$$
\mathsf{E}[\,\Delta_\ell Q\,] = \begin{cases} \mathsf{E}[\,Q_\ell-Q_{\ell-1}\,] & \ell > 0 \\ \mathsf{E}[\,Q_0\,] & \ell = 0 \end{cases}
$$
\n
$$
\mathsf{E}[\,Q\,] \approx \mathsf{E}[\,Q_L\,] = \sum_{\ell=0}^L \mathsf{E}[\,\Delta_\ell Q\,].
$$

Multilevel Monte Carlo

Want to approximate

 $E[Q]$

given approximate samples $Q \approx Q_\ell$, with

$$
\begin{aligned} \text{Cost}(Q_{\ell}) \propto 2^{\gamma \ell} \\ |\mathsf{E}[|Q - Q_{\ell}|] \propto 2^{-\alpha \ell} \\ \text{Var}[|Q - Q_{\ell}|] \propto 2^{-\beta \ell}. \end{aligned}
$$

The cost of attaining root mean square error ε is of order

$$
\varepsilon^{-2} \begin{cases} 1 & \beta > \gamma \\ |\log \varepsilon|^2 & \beta = \gamma \\ \varepsilon^{-(\gamma - \beta)/\alpha} & \beta < \gamma. \end{cases}
$$

Unbiased Multilevel Monte Carlo [Rhee, Glynn, 2015]

$$
\mathsf{E}[Q] = \sum_{\ell=0}^{\infty} \mathsf{E}[\Delta_{\ell} Q] = \mathsf{E}\Big[\left(\Delta_{\kappa} Q\right) 2^{\zeta_{\kappa}} / C_{\zeta}\Big]
$$

where κ is a random, non-negative integer with probability mass

$$
P[\kappa = \ell] = C_{\zeta} 2^{-\zeta \ell}.
$$

Provided,

$$
\mathsf{Cost} (Q_\ell) \propto 2^{\gamma \ell} \, .
$$

$$
\mathsf{E} [\,|Q - Q_\ell|^q\,] \propto 2^{-q\beta \ell/2},
$$

 $(\Delta_\kappa Q)\, 2^{\zeta\kappa}/\mathit C_\zeta$ has finite expected sampling cost and ρ^{th} moment when

$$
\gamma < \zeta < \frac{p}{p-1} \frac{\beta}{2} \implies p < \min\bigg\{q, \frac{1}{1-\beta/2\zeta}\bigg\}.
$$

Example 1: $\beta = 2\gamma = 2$, $\zeta = (\beta + \gamma)/2 = 3/2$, $q \to \infty \Rightarrow p < 3$. Example 2: Same, with $q = 3 - \varepsilon, \zeta < (3 - \varepsilon)/(2 - \varepsilon) \Rightarrow p < 3 - \varepsilon.$

Overview

Let X, Y, Z be random variables and $f : \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ sending $(u, y) \mapsto f(u, y)$ be Lipschitz in u and y. Consider the system

$$
\varphi = P[U_0(Z) > \lambda_{\varphi}]
$$

$$
U_0(Z) = E[f(U_1(Y), Y) | Z]
$$

$$
U_1(Y) = E[X | Y].
$$

Key features:

- Recursive approximation of nested expectations $U_0(Z)$ and $U_1(Y)$, paired with approximation of the variables X, Y and Z.
- ▶ Approximation of discontinuous observables:

$$
\varphi = P[Q > 0] = E[X_{Q>0}].
$$

Nested Simulation

Consider now the nested pair of expectations

$$
U_0 := \mathsf{E}[f(U_1(Y), Y)]
$$

$$
U_1(Y) := \mathsf{E}[X | Y]
$$

Given exact samples of X and Y : Multilevel Monte Carlo with antithetic nested Monte Carlo averages for $E[X|Y]$. [Bourgey, De Marco, Gobet, 2020], [Bujok, Hambly, Reisinger, 2015], [Giles, H-A, 2019].

Problem: Exact samples of X and Y are not available. Instead, given $Y = y$ we approximate $X \approx X_k(y)$ using a Milstein scheme. Similarly, $Y \approx Y_{\ell}$.

Solution: Combine nested 'inner' multilevel Monte Carlo estimate of $U_1(y)$, given $Y = y$, within an 'outer' multilevel Monte Carlo estimate of U_0 .

Antithetic Multilevel Difference

Consider now the nested pair of expectations

$$
U_0 := \mathsf{E}[f(U_1(Y), Y)]
$$

\n
$$
U_1(Y) := \mathsf{E}[X | Y]
$$

\n
$$
\widehat{U}_{1,\ell}(y) := \sum_{k=0}^{\ell} \frac{1}{N_{\ell,k}} \sum_{n=1}^{N_{\ell,k}} \Delta_k^{(n)} X(y)
$$

\n
$$
N_{\ell,k} \propto 2^{\ell-k}.
$$

Antithetic multilevel difference:

$$
\Delta_\ell f \coloneqq f\Big(\widehat{U}_{1,\ell}(\mathsf{Y}_{\ell}),\mathsf{Y}_{\ell}\Big) - \frac{1}{2}\sum_{i=0}^1 f\Big(\widehat{U}_{1,\ell-1}^{(i)}(\mathsf{Y}_{\ell-1}),\mathsf{Y}_{\ell-1}\Big),
$$

where

$$
\widehat{U}_{1,\ell}(y) - \frac{1}{2} \sum_{i=0}^{1} \widehat{U}_{1,\ell-1}^{(i)}(y) = \mathcal{O}(\Delta_{\ell} X).
$$

Convergence

Theorem ([H-A, Spence, 2023])

Assume f is piecewise-twice differentiable and with bounded first and second derivative, and that for $\beta > 1$ and $q > 2$

$$
Cost(X_k(\cdot)) + Cost(Y_{\ell}) \propto 2^k + 2^{\ell}
$$

$$
E[\|X_k(Y_{\ell}) - X_{k-1}(Y_{\ell})\|^q] + E[\|Y_{\ell} - Y_{\ell-1}\|^q] \propto 2^{-q\beta k/2} + 2^{-q\beta \ell/2}
$$

$$
E[\|X_k(Y) - X_k(Y_{\ell})\|^q] \propto 2^{-q\beta \ell/2}.
$$

Then,

$$
\begin{aligned} &\text{Cost}(\Delta_{\ell}f) \propto \ell 2^{\ell} \\ &\text{Var}[\Delta_{\ell}f] \propto 2^{-\min\{\beta, 3q/2(q+1)\}\ell}. \end{aligned}
$$

Consequently, the cost of estimating U_0 to accuracy ε is of order

$$
\varepsilon^{-2}\begin{cases}1 & \beta > 1 \\ |\log \varepsilon|^3 & \beta = 1.\end{cases}
$$

Extensions

▶ Can be applied recursively to consider repeatedly nested expectations of the form

$$
U_j(Y_j) = E[f_{j+1}(U_{j+1}(Y_{j+1}), Y_{j+1}) | Y_j]
$$

$$
U_{T-1}(Y_{T-1}) = E[f_T(Y_T) | Y_{T-1}].
$$

▶ Bermudan option pricing/optimal control.

- ▶ Can randomise the approximation level ℓ in the terms $\Delta_{\ell}X$ and $\Delta_\ell f$ to obtain unbiased estimates of $U_1(Y)$ and $U_0.$
	- ▶ [Zhou, Wang, Blanchet, Glynn, 2022], [Syed, Wang, 2023].
	- ▶ Reduces the number of finite moments leading to large variance and sampling cost for repeatedly nested expectations as above.

 \triangleright Can be extended to include antithetic path simulation of Y.

Overview

Let $X,$ $Y,$ Z be random variables and $f : \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{R}$ sending $(u, y) \mapsto f(u, y)$ be Lipschitz in u and y. Consider the system

$$
\varphi = P[U_0(Z) > \lambda_{\varphi}]
$$

$$
U_0(Z) = E[f(U_1(Y), Y) | Z]
$$

$$
U_1(Y) = E[X | Y].
$$

Key features:

Recursive approximation of nested expectations $U_0(Z)$ and $U_1(Y)$, paired with approximation of the variables X, Y and Z.

▶ Approximation of discontinuous observables:

 $\varphi = P[Q > 0] = E[X_{Q>0}].$

Framework

$$
P[Q > 0] = E[X_{Q>0}] \approx E[X_{Q_0>0}] + \sum_{\ell=1}^{L} E[X_{Q_\ell>0} - X_{Q_{\ell-1}>0}]
$$

Theorem

For root mean square error ε and (random), positive-valued, normalising factor σ_{ℓ}

$$
\text{Cost}(Q_{\ell}) \propto 2^{\gamma \ell} \n\text{E}\Big[|Q - Q_{\ell}|^q \sigma_{\ell}^{-q}\Big] \propto 2^{-q\beta \ell/2} \implies \text{MLMC} \propto \begin{cases} \varepsilon^{-2} & \beta > \frac{q+1}{q} 2\gamma \\ \varepsilon^{-2} |\log \varepsilon|^2 & \beta = \frac{q+1}{q} 2\gamma \\ \varepsilon^{-1-2(\frac{q+1}{q})(\frac{\gamma}{\beta})} & \beta < \frac{q+1}{q} 2\gamma. \end{cases}
$$

Previous Research

► Explicit smoothing $\chi_{x>0} \approx g(x)$:

[Giles, Nagapetyan, Ritter, 2015].

▶ Numerical smoothing:

[Bayer, Hammouda, Tempone, 2023], [Giles, Debrabant, Rößler, 2019].

\blacktriangleright Path branching:

[Giles, H-A, 2022].

▶ Quasi-Monte Carlo:

[Xu, He, Wang, 2020].

▶ Adaptivity:

- \blacktriangleright For partial differential equations with random coefficients [Elfverson, Hellman, Målqvist, 2016].
- \triangleright For nested expectations $Q = E[X | Y]$ [Broadie, Du, Moallemi, 2011], [Giles, H-A, 2019].

Adaptivity

$$
E[X_{Q>0}] \approx E[X_{Q_0>0}] + \sum_{\ell=1}^{L} E\Big[X_{Q_{\ell+\eta_{\ell}}>0} - X_{Q_{\ell-1+\eta_{\ell-1}}>0}\Big]
$$

Theorem ([H-A, Spence, Teckentrup, 2022]) Let η_ℓ be such that $|Q_{\ell+\eta_\ell}|\geq \sigma_{\ell+\eta_\ell} 2^{\gamma(\ell(1-r)-\eta_\ell)/r}$ or $\eta_\ell=\ell$. Then, for a root-mean-square error $\varepsilon > 0$

Application: Digital Options

$$
P[S_T > K], dS_t = a(S_t)dt + b(S_t)dW_t
$$

CVA Capital Charge [Giles, H-A, Spence, 2023]

$$
\varphi = P \left[\frac{\text{CVA}_{H}}{B_{H}} - \text{CVA}_{0} > \lambda_{\varphi} \right],
$$

\nCVA_t = B_t $E^{Q} \left[\chi_{t \le \tau \le T} \text{LGD max} \left\{ E^{Q} \left[B_{T}^{-1} \pi(S_{T}) \, | \, \mathcal{G}_{\tau} \right], 0 \right\} \, | \, \mathcal{G}_{t} \right].$

Using a combination of

- \blacktriangleright Milstein simulation of the assets S_{τ}
- ▶ Nested multilevel Monte Carlo estimation
- ▶ Unbiased multilevel Monte Carlo sampling
- ▶ Variance reduction techniques,

we can express

$$
\frac{\text{CVA}_{H}}{B_{H}} - \text{CVA}_{0} = \text{E}[\Delta | Z],
$$

where Z captures all \mathcal{G}_H -measurable risk-factors and Δ is a random variable which can be sampled exactly.

CVA Capital Charge [Giles, H-A, Spence, 2023]

$$
\varphi = \mathsf{P}[U_0(Z) > \lambda_{\varphi}]
$$

$$
U_0(Z) \coloneqq \mathsf{E}[\Delta | Z]
$$

Approximate

$$
U_0(Z) \approx \widehat{U}_{0,\ell}(Z) = \frac{1}{N_{\ell}} \sum_{n=1}^{N_{\ell}} \Delta^{(n)}(Z).
$$

- ▶ Adaptively add more independent samples according to the value of $|\hat{U}_{0,\ell}(Z)|/\sigma_{\ell}$, where σ_{ℓ}^2 is the conditional sample variance.
	- ▶ Normalizing by σ_{ℓ} can mitigate issues caused by unbiased multilevel Monte Carlo leading to fewer moments of $\Delta(Z)$.

CVA: Numerical Results

$$
\varphi = \mathsf{P}[U_0(Z) > \lambda_{\varphi}]
$$

Conclusion

- ▶ Multilevel Monte Carlo methods can be extended recursively to systems of repeatedly nested expectations.
- ▶ Adaptive sampling provides a general framework to improve multilevel Monte Carlo methods for problems which contain discontinuous functions of approximated random variables.
- ▶ A combination of both approaches can provide significant gains over nested Monte Carlo simulation for problems arising in credit risk.

Risk measures:

- **►** The value-at-risk solves $\varphi = P[$ $Q > \lambda_{\varphi}$]. See recent work by [Crepey, Frikha, Louzi, Spence, 2024] which utilizes the adaptive techniques discussed here with a multilevel stochastic approximation techniques to find the quantile λ_{φ} .
- ▶ Conditional value-at-risk is E[Q | Q > λ_{φ}] = inf_x $f(x) = f(\lambda_{\varphi})$ for a given φ and $f(x) = x + \mathsf{E}[\max\{Q - x, 0\}]/\varphi$ [Rockafellar, Uryasev, 1999].
- **E** C. Bayer, C. B. Hammouda, and R. Tempone, *Multilevel* Monte Carlo combined with numerical smoothing for robust and efficient option pricing and density estimation, arXiv preprint [arXiv:2003.05708,](https://arxiv.org/abs/2003.05708) (2023).
- \blacksquare ____, Numerical smoothing with hierarchical adaptive sparse grids and quasi-Monte Carlo methods for efficient option pricing, Quantitative Finance, 23 (2023), pp. 209–227.
- F. Bourgey, S. De Marco, E. Gobet, and A. Zhou, Multilevel Monte Carlo methods and lower-upper bounds in initial margin computations, Monte Carlo Methods and Applications, 26 (2020), pp. 131–161.
- M. Broadie, Y. Du, and C. Moallemi, Efficient risk estimation 晶 via nested sequential simulation, Management Science, 57 (2011), pp. 1172–1194.
- 量 K. Bujok, B. Hambly, and C. Reisinger, Multilevel simulation of functionals of Bernoulli random variables with application to basket credit derivatives, Methodology and Computing in Applied Probability, 17 (2015), pp. 579–604.
- **同 D. Elfverson, F. Hellman, and A. Målgvist, A multilevel Monte** Carlo method for computing failure probabilities, SIAM/ASA Journal on Uncertainty Quantification, 4 (2016), pp. 312–330.
- **M.** Giles, K. Debrabant, and A. Rößler, Numerical analysis of multilevel Monte Carlo path simulation using the Milstein discretisation, Discrete and Continuous Dynamical Systems, 24 (2019), pp. 3881–3903.
- 6 M. Giles and A.-L. Haji-Ali, Multilevel nested simulation for efficient risk estimation, SIAM/ASA Journal on Uncertainty Quantification, 7 (2019), pp. 497–525.
- \blacksquare , Multilevel path branching for digital options, arXiv pre-print: 2209.03017, (2022).
- 暈 M. Giles, A.-L. Haji-Ali, and J. Spence, Efficient risk estimation for the credit valuation adjustment, arXiv preprint [arXiv:2301.05886,](https://arxiv.org/abs/2301.05886) (2023).
- 歸 M. Giles, T. Nagapetyan, and K. Ritter, Multilevel Monte Carlo approximation of distribution functions and densities, SIAM/ASA Journal on Uncertainty Quantification, 3 (2015), pp. 267–295.
- A.-L. Haji-Ali, J. Spence, and A. Teckentrup, Adaptive multilevel Monte Carlo for probabilities, SIAM Journal on Numerical Analysis, 60 (2022), pp. 2125–2149.
- \blacksquare F. Jonsson, On the heavy-tailedness of Student's t-statistic, Bernoulli, 17 (2011), pp. 276–289.
- **E** C.-H. Rhee and P. Glynn, Unbiased estimation with square root convergence for SDE models, Operations Research, 63 (2015), pp. 1026–1043.
- Y. Syed and G. Wang, Optimal randomized multilevel Monte Carlo for repeatedly nested expectations, Proceedings of the 40th International Conference on Machine Learning, PLMR, 202 (2023), pp. 33343–33364.
- **Z.** Xu, Z. He, and X. Wang, *Efficient risk estimation via nested* multilevel quasi-Monte Carlo simulation, Journal of Computational and Applied Mathematics, 443 (2024), p. 115745.
- **Z.** Zhou, G. Wang, J. Blanchet, and P. Glynn, Unbiased optimal stopping via the MUSE, Stochastic Processes and their Applications, 166 (2023), p. 104088.